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Testing the Rational Expectations
Hypothesis

In the remainder of this book, we consider the ways in which the RE
hypothesis has been tested empirically. We begin in this chapter with
the efficient market hypothesis, which is a joint hypothesis made up
of rational expectations and a hypothesis about how expected returns
are determined. In chapter 15, we discuss the evidence assembled by
Robert Barro and others to test whether output is determined by the
New Classical model or not. In chapter 16, we review direct tests of
rational expectations using survey data on actual expectations; we then
turn to the estimation of complete rational expectations models. Some
such models are ‘deep structure’ (where the parameters are those of
tastes and technology, presumably invariant to changes in the processes
driving the exogenous variables including policy) but most are ‘shallow
structure’, the parameters being those of aggregate supply and demand
curves.

The purpose of this chapter is to consider the relationship between
the concepts of financial market efficiency and rational expectations.
A particular feature of financial markets is that trading can occur, in
principle, almost continuously, and the market price is free to move to
eradicate any imbalance between demand and supply. Furthermore since
the assets traded (stocks, bonds, commodities) can be resold or traded in
future periods it follows that financial markets are, more obviously than
others, speculative in the technical sense that expectations of future asset
prices affect current asset prices.

We begin this chapter by defining the concept of an efficient capital
market and setting out models for the determination of normal or equi-
librium asset returns and also the implications of rational expectations
for the determination of asset prices. A brief review of the empirical
evidence for efficiency in asset markets together with the problems faced
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in interpretation of the empirical evidence is also presented.

EFFICIENCY, PERFECTION AND ASSET PRICING
IN CAPITAL MARKETS.

A capital or asset market is defined to be efficient when prices (e.g. stock
prices, bond prices or exchange rates) fully and instantaneously reflect
all available relevant information. Fama (1970) has defined three types
of market efficiency, according to the extent of the information reflected
in the market:

1. Weak-form efficient: A market is weak-form efficient if it is not
possible for a trader to make abnormal returns by developing a
trading rule based on the past history of prices or returns.

2. Semi-strong-form efficient: A market where a trader cannot make
abnormal returns using a trading rule based on publicly available
information. Examples of publicly available information are past
money supply data, company financial accounts, or tipsters in pe-
riodicals.

3. Strong-form efficient: Where a trader cannot make abnormal re-
turns using a trading rule based on any information source, whether
public or private.

These three forms of efficiency represent a crude partitioning of all
possible information systems into three broad categories, the precise
boundaries of which are not easily defined. However, they are useful,
as we shall see, for classifying empirical research on market efficiency.
As their names suggest, strong-form efficiency implies semi-strong effi-
ciency which in turn implies weak-form efficiency, while of course the
reverse implications do not hold.

It is useful to distinguish between the concept of an efficient capital
market and that of a perfect capital market. A perfect capital mar-
ket could be defined as one in which the following conditions hold (see
Copeland and Weston, 1988):

1. Markets are informationally efficient, that is information is costless
and it is received simultaneously by individuals.

2. Markets are frictionless, that is there are no transactions costs or
taxes, assets are perfectly divisible and marketable and there are
no constraining regulations.
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3. There is perfect competition in product and securities markets,
that is agents are price-takers.

4. All individuals are rational expected-utility maximizers.

If conditions 1 to 4 were met (and assuming no significant distortions
elsewhere in the economy), the capital market would be allocationally
efficient, in that prices would be set to equate the marginal rates of re-
turn for all producers and savers, and of course consequently savings are
optimally allocated. The notion of capital market efficiency is therefore
much less restrictive. An element of imperfect competition in product
markets would imply capital market imperfection; nevertheless, the stock
market could determine a security price which fully reflected the present
value of the stream of expected future monopoly profits. Consequently
the stock market could still be efficient in the presence of imperfection.

Asset prices, in order to give the correct signals to traders, must
fully and instantaneously reflect all available information. However, as
pointed out by Grossman and Stiglitz (1976, 1980), it cannot be the case
that market prices do fully and instantaneously reflect all available infor-
mation. If this were so, agents would have no incentive for collecting and
processing information, since it would already be reflected in the price,
which each individual is assumed to be able to observe costlessly. It is
the possibility of obtaining abnormal profits in the course of arbitraging
which provides the incentive to collect and process new information. In
the Grossman and Stiglitz model, individuals choose to become informed
or remain uninformed, and in equilibrium each individual is indifferent
between remaining uninformed on the one hand, and collecting infor-
mation (or buying the expertise of brokers), so becoming informed, on
the other. This is because after deducting information costs each action
offers the same expected utility.!

Hellwig (1982) challenges the Grossman and Stiglitz proposition that the infor-
mativeness of market prices in equilibrium is bounded away from full informational
efficiency. Hellwig points out that this proposition rests on the assumption that
agents learn from current prices at which transactions have actually been completed.
This is a model in which investors learn from past equilibrium prices but not from
the auctioneer’s current price offer. Hellwig is able to show that if the time span
between successive market transactions is short, the market can approximate full in-
formational efficiency arbitrarily closely and yet the return to being informed remains
bounded away from zero. This results from the fact that informed agents can uti-
lize this information before uninformed agents have an opportunity to infer it from
current market prices.

Hellwig also pursues the implications that arise if one relaxes the assumption that
agents cannot assure themselves of being informed in a given period, but rather agents
choose the frequency on average at which they obtain information. It appears that
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Nevertheless, a reasonable interpretation of empirical tests of the
efficient model hypothesis is, given that the data are collected at discrete
intervals, that the process of arbitrage has occurred within the period.
Consequently the implications of different available information can then
be analysed without modelling the process of arbitrage itself (Begg, 1982)
and this is the usual assumption in empirical work.

RATIONAL EXPECTATIONS AND MARKET EFFI-
CIENCY

The semi-strong-form efficient markets model, i.e. that based on pub-
licly available information, is an application of the concept of rational
expectations, although this was not stressed in the early literature on
efficiency, which goes back much further than the rational expectations
literature. If expectations are non-rational, then publicly available in-
formation will not be reflected in asset prices and systematic abnormal
profit opportunities will be available. This can be seen simply enough by
noting that market agents have to know the model governing prices (or
act as if they know it) in order to eliminate abnormal expected returns;
if the model governing expected prices is different from that governing
actual prices, there will be systematic abnormal returns available in the
market.

Strong-form efficiency also implies that agents have rational expec-
tations, since they must know how to use all sorts of private information
as well as public; where strong-form efficiency differs from semi-strong is
about the effects of private information on the market (fully discounted
in strong-form, not at all in semi-strong).

Not quite the same is true of weak-form efficiency. In this case, since
they make efficient use only of the past history of prices, they must know
the time series model governing prices; strictly speaking this does not
imply knowledge of the underlying structural model, since there will be
generally insufficient identifying restrictions. Nevertheless, in practice,
with limited samples and structural change, recovery of the time-series
parameters by market agents from the data can effectively be ruled out.
It is therefore natural, if not necessary, to assume in this case too that
agents have rational expectations and so know the underlying model,
from which they are then able to derive the time-series parameters.

While, therefore, market efficiency can be regarded as implying ratio-

relaxing such assumptions leaves his main result above unimpaired — see also the
survey by Jordan and Radner (1982).



Testing the Rational Expectations Hypothesis 339

nal expectations, rational expectations does not imply market efficiency.
Market efficiency is a joint hypothesis about expectations and market
behaviour (specifically, the model of equilibrium expected returns). The
main hypothesis about behaviour is the capital asset pricing model (see
below); and in empirical tests more detailed assumptions must also be
made about how equilibrium returns will move. Further hypotheses con-
cern the behaviour of the agents with access to different sets of ‘available’
information. Under weak-form efficiency, active market participants are
assumed to make effective use only of the past history of prices in their
market; one theoretical basis for this has been in the costs of obtaining
and processing wider information (Feige and Pierce, 1976). Under semi-
strong-form efficiency, the assumption made is the usual one in rational
expectations macro models that active agents use all publicly available
information, presumed to be useable at zero or low cost. Finally, in the
strong-form case it is assumed that those agents with access to private
information deploy or indirectly influence funds to eliminate expected
returns from this source of information; there are, however, problems
with this, since private information cannot be sold at a fair price (once
divulged it is valueless, but before divulgence it is impossible for the
buyer to assess) and those with access have, by definition, in general
only limited funds.

Because all definitions of market efficiency invoke the concept of ab-
normal returns, we are required for empirical work to have a theory of
the equilibrium expected rate of return for assets. Tests of market effi-
ciency are conducted after allowance for the equilibrium rate of return.
If the riskiness of an asset does not change over time (or conversely if its
risk changes randomly over time) then, for example, weak-form efficiency
implies that there should not be an extrapolative pattern in the time se-
ries of returns. If there were a recurring pattern of any type, traders
who recognized the pattern would use it to make abnormal profits. The
very effort to use such patterns would, under the efficiency hypothesis,
lead to their elimination.

THE CAPM MODEL OF EQUILIBRIUM EXPECTED
RETURNS

The equilibrium expected return on assets is a central topic in modern
portfolio theory and the interested reader is directed to, for example,
Copeland and Weston (1988) for a full discussion (Allen, 1985, provides
a helpful introduction). The following brief account of one such and
widely used theory, the capital asset pricing model (CAPM), must suffice
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here.

Only if traders are risk-neutral® will they be indifferent to the vari-
ability of the returns (i.e. the risk) on their portfolio. Risk-averse indi-
viduals will be concerned about aggregate portfolio risk and will require
a risk premium on each asset (or class of assets). By combining assets
in the portfolio it is possible to diversify away some of the risk (the ‘un-
systematic’ risk) associated with an asset. However, to the extent that
the returns on an asset move with the market, there will be a compo-
nent of risk (systematic risk) that cannot be diversified away. Assuming
optimal portfolio diversification, the risk premium reflects the asset’s
systematic risk and hence its contribution to the overall variability of re-
turns on the portfolio. This premium will be included in the equilibrium
expected rate of return on this asset, in addition to the general rate of
return on the portfolio.

The algebra of the CAPM theory is straightforward. All investors are
assumed, as in standard portfolio analysis, to maximize their expected
utility subject to their portfolio wealth constraint: this yields for each
investor an optimally diversified holding of each asset in terms of the
expected returns on all assets. It is convenient to aggregate this equation
across investors and refer to the result as the asset demand of a ‘typical’
investor (but this does not imply that all investors are the same; it is
merely an expression indicating averaging). The CAPM’s contribution
is then to note that at any time there will be a certain stock of each
asset outstanding in the market which must be held in equilibrium. To
be held, its expected return (and so its price) must satisfy the asset
demand equation of the typical investor: in other words, this equation
is turned round and solved for the necessary expected return in terms
of the outstanding asset quantity. As the quantity of each asset rises,
however risky it may be, it contributes only a little to the total risk on
the whole market portfolio because it forms only a small part of this
diversified whole; hence the rise in necessary expected return (fall in
price) is negligible and we can talk of ‘the’ required expected return on
an asset, independently of its quantity outstanding. Clearly this must
not be pushed too far: some assets (e.g. dollar liabilities in currency

2Consider an individual faced with a possible gamble; he may choose either to
receive 100 for sure, or to toss a coin and receive 50 if heads occur and 150 if tails
occur. The expected outcome of this latter choice is 100 = 0.5(50) + 0.5(150). The
question is: will the individual prefer the actuarial value of the gamble (this it its
expected outcome) with certainty or will he prefer the gamble itself? If he prefers the
gamble he is a risk lover; if he is indifferent he is risk neutral; and if he prefers the
sure outcome he is risk averse. It is also possible to compute the maximum amount
of wealth an individual would be willing to give up in order to avoid the gamble. This
is the notion of a risk premium (see Pratt, 1964; Arrow, 1971; Markowitz, 1959).
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portfolios) are outstanding in very large quantities and their risk cannot
be fully diversified away.

Assume three assets, one of which yields a safe return . The typ-
ical investor maximizes the expected utility of end-of-period wealth,
E.U(W;41), with respect to w; and wsy subject to the budget constraint

Wip1 = wiRys + waRot + (1 — wy — wa) Ry (1)

where w; is the share in the investor’s portfolio of asset i, R;; is the
actual return during the period, Wy ,is his end-period wealth expressed
as an index (beginning period wealth = 1), U is his utility function
(U >0, U” <0), and F; is his expectation formed at the beginning of
the period when he takes his investment decision.

Take a Taylor series expansion of U(W;41) around Ey(Wiiq1):

UWig1) = UEWi1) + U (Wig1 — ExWig) +
0.5U" . E;(Wiy1 — EsWi1)* + ... (2)

Ignoring terms of higher order than two, (see e.g. Kraus and Litzen-
berger (1976), Hwang and Satchell (1997) or Harvey and Siddique (2000)
for some implications of higher moments) or alternatively assuming that
the agent’s utility function only depends on the first two moments, the
expectation of this is:

EtU(W,H.l) = U(EtWH_l) + U/'(EtWt+1 - EtWt+1) +
0.5U" . E,(Wyy1 — EsWi1) (3)

which is equal to
U(urEyRyt + wa By Roy + {1 — w1 — wa}Ry) +
0.5U" (w03 4+ wios + 2wiweo1)  (4)

where 0;; = Ei([Rit — EtRit][R;j+ — EtRj]), the covariance between the
returns of assets i and j, and o7 = the variance of i’s return.
The first order conditions with respect to w; and ws respectively are:

U,[EtRH — Rt] = U”[wlaf + 0'1211}2] (5)
and

U’[Etht — Rt] = U”[szg + 0'1211]1] (6)
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p is defined as a measure of absolute risk aversion.

We can express (5) and (6) in the CAPM form with required expected
asset returns as the dependent variable (the standard portfolio analysis
has the asset shares as the dependent variables): w; and wy are given
by the outstanding stocks of assets 1, 2 and the safe asset in the overall
market.

Rearranging (5) the expected return on asset 1 for example is :

ERyy = Ry 4 p(wi0F + wao12) = Ry + pw(ai[of — o12) + 012)  (8)
and on asset 2
EiRy = Ry + p(wao3 + wio12) = Ry + pw(az[os — 012 + 012)  (9)

where 7 is the share of asset 1 in the risky part of the market portfolio,
vy = L, xg = <2, and w is the share of the risky part in the total
market (w = w; + wsy). Suppose we regard asset 1 as being a single
asset and asset 2 as being a portfolio of all assets in the risky market,
that is essentially ‘the’ risky market portfolio. Then (8) reveals that
the expected return on a single asset consists of the safe return plus a
risk premium reflecting risk aversion (p), the overall share of risky assets
in the whole market (w) and the covariance between asset 1 and the
risky market (o12), ‘systematic risk’: there is also a small component
in the risk premium for the extent to which risk on asset 1 exceeds this
covariance (‘diversifiable risk’), but this has a negligible effect because
it is multiplied by x1, the small share of asset 1 in the risky market.
So provided asset 1 is small in relation to the market, its risk can be
virtually totally diversified away and barely affects the expected return.

Suppose we now let asset 2 embrace the whole risky market. Then
xo = 1 and we have from (9):

E{Rp; = Ry + pwoy, (10)
where m is the whole risky portfolio so that in this case 03 = 02,. From
this it follows that:

(B Ry — Ry)

2 (11)

pw =

This means we can rewrite asset 1’s required return, substituting (10)
into (8), as

[0% - Ulm] + Ulm}
o2
m

T
EiRyy = Ry + {z (BtRmi — Ry) (12)

or more generally for any asset

EiRit = Ry + B;(Et Ryt — Ry) (13)



Testing the Rational Expectations Hypothesis 343

where we assume the weight x, is small enough to be ignored and so

Bi= e (14)

2
Om

FEyR,,; — Ry is the excess return required on a unit of the average port-
folio: it is therefore ‘the cost of average risk’. Individual assets com-
mand higher or lower excess returns according to their ‘beta’, 3,, which
measures their systematic risk, the covariance of the ith asset with the
market portfolio, divided by the variance of the market portfolio — as
illustrated in figure 14.1.

EtRit
EtRm the market
pricing line
R
>

Figure 14.1: The Pricing of a Security

OTHER MODELS OF EQUILIBRIUM EXPECTED
RETURNS

A related idea to the CAPM assumes that aggregate market risk is dom-
inated by several sources of risk: principal component analysis can be
used to separate these out. Thus there is not one but several market
‘risks’ or variables which are uncorrelated (for example, one variable
might be a measure of the world business cycle, another might be the
North-South terms of trade): the expected return associated with tak-
ing each risk is priced exactly as above — now think of ‘asset 1’ and
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‘asset 2’ as being respectively ‘exposure’ to ‘risk 1’ and ‘risk 2’: that is,
you buy £1 worth of assets combined in such a way that their return is
correlated perfectly with variable 1, and similarly for variable 2. These
fundamental risks being priced, each asset is then priced, by arbitrage,
according to its amount of each risk. This is the arbitrage pricing theory
(APT), due to Ross (1976).

CONSUMPTION CAPM

In chapters 11 and 12 we set out Lucas’ theory of asset pricing. The
first-order condition for the optimal consumption and portfolio decision
is given by equation (9) in chapter 11 as

u'(cr) = EeB(1+ Ri)u'(cr41) (15)
where we have generalised the model to allow for the real gross return,
1+ Rj:, on the ith asset’

Recalling that the covariance of X and Y denoted by covXY is by
definition covXY = E(X — EX).(Y — EY) = EXY — EX.EY (we
also note in passing that cov(l + X, Y) = covXY), we can write the
unconditional form of (15) as

(1 - CO’U(l + Rit-Kt—I-l))
EKi11

E(1+ Ry) = (16)

3If we write the budget constraint as

ct + pesi41 + qbit1 = (e +di)se + be

where b; represents holdings of the riskless asset, st represents holdings of the risky
asset, pt is the price of the risky asset, g¢ is the normalised price of the riskless asset.
The optimization yields

u'(ct) - X =0 (1)
—Xtgt + BEtA41 =0 (2)
=Atpt + BE:(pe41 + dep1)Aer1 =0 (3)
where A; is the Lagrange multiplier.
These conditions, 1-3, yield
!
1 = Y (ci41)
qiu/(ct)
1 - BE, (pt+1 + dt-/&-l)ul(CH—l)
pru’ (ct)

noting that q{l = (1+ R) where R is the risk-free real rate. p, s can be generalized
to any asset as in the text.
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where Ky11 = % is called the stochastic discount factor or pricing
kernel.

For a risk free real interest rate R{ the covariance term is zero so

that
1
E(l+R)) = 17
( t) EKt+l ( )

For the portfolio of assets we have that
(1 — CO’U(Rmt, Kt+1))

E(1+ Ryy) = Bk, (18)
We can employ (16), (17) and (18) to obtain
E(Ri) — Rl = —(1+ R])cov(Rit, Ki41) (19)
and
LK E _pf
B(Ry) - B = 2o K| o — 1) (20)

cov(Rmi, Ki41)

Equation (20) illustrates that an asset’s expected real return in excess of
the risk free rate is higher the more negative the covariance between the
asset and the ratio of marginal utilities. This is because when consump-
tion is smaller, marginal utility is higher. An asset with a more negative
covariance thus implies that the return is lower when consumption is
low. This is the precisely the state however when wealth is more valued;
consequently the agent requires a higher risk premium to hold the as-
set. This model of the relationship between expected returns is known
as the consumption CAPM. Equation (20) shows the relationship to the
ordinary CAPM where covariances with the pricing kernel replace those
with the market portfolio.

To make the model empirically operational we have to specify the
error structure of the model and the form of the utility function.

Consider the implications of the model if

c%f‘s—l
1-46

where 6 is a constant and is called the coefficient of relative risk aversion.
This function has the convenient property that it nests the linear case,
6 = 0, and the logarithmic form, § = 1. (The latter case is found by
employing L’Hopital’s rule when § = 1.)

For this function

u(er) = (21)

4

W(ctt1) _ Cey1ys
() - ) (22)
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In addition we assume that consumption and asset returns are jointly
conditionally lognormally distributed. This allows us to make use of the
fact that for a conditionally lognormally distributed variable, Y,

InE(Y) = E[InY] + 0.5var[In Y] (23)

Taking logarithms of (15) and employing (23) we obtain

Et ln(l + th) = — h’lﬁ + (5Et(ln Ct4+1 — In Ct)
Ct+1

— 0.5{varIn(1 + Ry;) + 6*var(ln —==))
Ct

— 28cov(In(l + Ry) 1n(ctc—:1))} (24)

(Note let Y; = QkRsul(ernt) g4 from (15), In(1) = In 8+ In(E,Y}). Then

u’(ct)

use (22) and (23) to obtain

0 = Inf+ E(In(l+ Ry) — 51n(%)) +0.5{var(1 + Ri) +
¢
62var(ct—+1) — 26cov(In(1 + Ry;) ln(ct—ﬂ))}
Cy Ct

Rearranging this expression gives (25))
If the real rate of interest on an asset, R{ , is risk free (24) simplifies
to

In(1+R) = —InfB+6E,(Inciy1 —Iney) — 0.5(8var(In CtH) (25)
Ct
When there is a nominal asset yielding a certain nominal rate, Ny,
we can employ the definition of the real rate of interest for this asset,
say, 1 + Ry, as

(1+ Ny) P,

1+RNtE P )
t+

(26)

where P is the price level.

Substitution of (26) in (15) and employing the same method as above
gives us the required nominal return on the safe nominal asset, assuming
conditional normality, as:

hl(l + Nt) = — 111,3 + Et(lnPt_,_l - hlpt) + 5Et(lnct+1 - tht)

— 0.5(6%var(In ﬂ) + var(m) + 26cov(In Ct—“, ™)) (27)
Ct Ct

where 7 = In(Py1) — In(FP;)



Testing the Rational Expectations Hypothesis 347

We observe from (25) that the riskless real rate has a linear relation-
ship with the expected change in real consumption. If the riskless real
rate is assumed constant we can rearrange (25) with expected changes in
consumption as the left hand side variable. This is the relationship esti-
mated by Hall (1978): under rational expectations changes in consump-
tion should be orthogonal to information dated prior to the information
set conditioning expectations.

From (27) we observe that the safe nominal asset responds with a
unit coefficient to expected inflation and is also determined by terms
which reflect inflation risk premia.

Subtracting (25) from (24) we obtain

EyIn(1+ Ry) —In(1+ R}) + 0.5var(1 + Ry)

= Scov <1n(1 + R“),ln(cfc—tl)) (28)

or that

In Etw = dcov (ln(l + Ryt), ln(ct—ﬂ)) (29)
(1+R)) ct

The implication of this model is that risk premia are determined by
the covariation between the asset and changes in consumption times the
coefficient of relative risk aversion.

Because the covariance term is relatively small in actual data, empir-
ical tests of this model have not been able to explain the excess return
on stocks over bonds, on average some 6% in the US over 100 years and
large in other countries as well (see Campbell, 1996), without assuming
a possibly implausibly large coefficient of relative risk aversion (well in
excess of 10). This has become known as the equity premium puzzle after
the pioneering contribution of Mehra and Prescott (1985). Recent con-
tributions have suggested a variety of mechanisms that might resolve the
puzzle. These include more general specifications of the utility function
(e.g. Epstein and Zin, 1989, 1991), the introduction of habit forma-
tion (e.g. Constantinides, 1990; Campbell and Cochrane, 1999, 2000),
survivor bias (e.g. Brown, Goetzmann and Ross, 1995), peso problems
(see below; Rietz, 1988), heterogeneous agents (e.g. Constantinides and
Duffie, 1996). Many of these ideas are superbly set out in Campbell, Lo
and MacKinlay (1997).
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DETERMINATION OF ASSET PRICE BEHAVIOUR
UNDER RATIONAL EXPECTATIONS

We next consider the implications of the assumption of rational expec-
tations for the behaviour of asset prices. Consider the return to holding
an asset over the period ¢ to ¢ + 1, say a share. We have
P11+ D
Rip1 = % 1 (30)
(
where D;41 is any dividend or payment in the period and P, P;;i is
the price of the asset at time ¢ and t + 1.

We assume initially for simplicity that investors are risk neutral so
that via arbitrage expected returns are equal to those on a riskless asset
with a real rate of interest, R, assumed constant, so that E;R;11 = R.

Since P; is part of the current information set, the expectation of
(30) when rearranged is given by

P=—' EP.+——ED (31)
t (1+F) t4t4+1 (1+F) tLt41

Assuming rational expectations and solving this model forwards N

periods we obtain

N

Dy EP N
P, =F E — + = 32
t ti=1 1+R)  (1+R)N (32)

In the absence of speculative bubbles (see below) we assume that the
last term goes to zero as we let N go to infinity. In this case the current
asset price is equal to the expected value of the stream of dividends into
the indefinite future. This term is the fundamental of the process which
we can call F}.

Under these assumptions we have that:

o0

Dy
nenS

i=1

We can write (33) in the equivalent form

o0

Dt+i Dt Dt EtDt+1 EtDt+1

1+R 1+R (1+R? (1+R)y
EiDyi o EiDi o

I+ (+RP (34)

_|_
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Rearranging (34) we have that

o~ AD;y; D E.D E,D
P=E Y e t ¢ t_+12 R L (35)
L (1+R)| 1+R (1+R? (1+R)3
i=1
so that using (33) we can rewrite (35) as
— AD, D, Py
P, =F —— = + = 36
e ;(1+R)1 1+R  1+R (36)

Multiplying through by 1 + R and rearranging we obtain the alter-
native form

D, 1
P==+—=E

z T (37)

i ADyy;
(1+R)i-1

i=1

Equation (37) shows that the current price of the stock is equal to
the dividend divided by R plus a term in the discounted stream of ex-
pected future changes in dividends. In this form the model is amenable
to empirical testing in the form of cointegration analysis (see Time-Series
Annex). If dividends are a non-stationary process but changes in divi-
dends are stationary then the stock price is cointegrated with dividends
with coefficient £.

An insightful special case of the above model arises when dividends
are expected to grow at a constant rate g.

For this case

EDyyi = (14 g)EDyyi1 = (14 9)'D; (38)
Substituting (38) in (33) we obtain

_ (49D, A+9)?Dy | 1+9)°Dy | (1+9)'Dy
P="0m "Tasre Taxnr axmr W

We can rewrite (39) as

_ (1+g)Dy (l+g)  (A+g9?  (A+g)?°
B="0rm T aem T uawe Tasmg ) WO

Recalling that 2= =1+ z+2? 4+ 2% +..... for | z |[< 1 and assuming
that g < R (as it must be since the stock price is not infinite) we can
rewrite (40) as

(14 9g)D;
(1+R) ]1-

=

|~ —
—~
—
_|_
o)
~—
>
-~

1+g)
(1+R)
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This form is the Gordon growth model. It demonstrates the impor-
tant point that if R is close to g then small permanent changes in R can
have a major impact on the stock price.

The assumption made in the derivation of the asset price (33) is that
expected stock returns are equal to a constant risk-free real rate of in-
terest (in the context of CAPM say a constant real rate plus a constant
risk premium). Relaxing this assumption in the above framework results
in the loss of analytic tractability since expectations would be of a non-
linear form. It is interesting to note an approximation for the case of a
variable return that preserves tractability which was initially employed
by Campbell and Shiller (1988 a, b).

Taking logarithms of (30) we have that

ln(l + Rt+1) = 1n(Pt+1 + Dt+1) - lIl(Pt) = 1n(Pt+1) - ln(Pt)
Dy yq
+1In <1—|— 2 > (42)

t+1

Noting that % = exp[ln D11 — In P;41] we can rewrite (42) as

i1 = pig1 — P+ In(1 + exp(dis1 — peya)) (43)

where lower case letters now represent logarithms so that r, = In(1+ Ry)

Letting z; = dy+1 — pr+1 and taking a first-order Taylor expansion of
the last term in (43) around the mean value of Z we obtain

exp(z
Fess = Prat — pi 4 In(1 + exp(z) + —2E) Sldess ~ a7 (44

1+ exp(z

Rearranging (44) we obtain

Pt+1 exp(Z)di+1 _ Zexp(Z)
Tt41 1+ exp(E) 1+ eXp(E) Pt + Il( + exp(z)) 1+ eXp(E)
(45)
Leiﬁtlng A= H#p(?) and noting that % = exp(z) and 1 — )\ =
% we can rewrite (45) as

it =i+ (L= Ve = =) = (1= N (32) o)
or
Tea1 = A1 + (1= N)dpy1 —pe + 6 (47)
where § = —In(A) — (1 — A)In (:52)
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For a constant dividend-price ratio
1

- (48)
1+

The average value of the dividend price ratio observed in economies
shows that the value of A will be close to unity, around 0.96 in the US
for example, so that in (47) the weight on the log price is close to one
and that on log dividends closer to zero. Clearly the approximation
will be more accurate the smaller the variation in the log dividend price
ratio. Analysis by Campbell and Shiller (1988a) is suggestive that the
approximation does not produce gross violations of reality, particularly
at the monthly level of analysis. Essentially the approximation provides
analytical tractability at the cost of some error in the statement of aver-
age returns. From an empirical perspective dividends appear to be more
parsimoniously explained as a loglinear rather than a linear time-series
process and this is an advantage of the approximation method.

We can take expectations of (47) and solve forward to obtain

Pt =T—% + E: Z’\l (1= A) dtit1 — retiv] (49)

where we assume once again in the absence of speculative bubbles that
the term F;A*piyoo is zero.

We observe from (49) that the current log stock price is higher the
higher expected future dividends and the lower expected future returns
(i.e. the stock discount factors).

We can transpose (49) following the type of procedure outlined above
(34) to obtain the equivalent form

[ee]

pr = & +di + E; ; A (Adgyit1 — Tegiv1) (50)
(Hint: in (49) add inside square brackets the term dy — dy + Adyy1 —
Myi1 + Ndipo — N2dypo + — + XN'dygn — N"dysn, rearrange in terms of
Adiy14;. The terms in dy + Adpyq1 + )\2dH_2 + ... + A"dypthen can be

substituted out.)
Equation (47) is useful for illustrating another point.Taking expecta-
tions at time ¢ of (47) and subtracting the resultant from (47) we obtain

rir1 — Eripr = Apeg1 — Eipegr) + (1 = N)[dey1 — Eydiyq] (51)

If we lead (50) one period, take expectations of it at time ¢ and
subtract the resultant from it, we obtain an expression for p;11 — Fipey1
which we substitute in (51) to obtain
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ri41 — Byrep =
diy1 — Eydir + By {Z N (Adyyori — Tt+2+i):|
i=0

—E {Z N (Adyyosi — 7"t+2+z')]
=0

+ (1= A) (dey1 — Erdiyr)  (52)

Recognising that dt+1 —Etdt+1 = Et+1dt+1 — Et+1dt — (Etdt+1 — Etdt)

under the information assumptions of the model, i.e. d; is observable at

time ¢, dyy1 at t+1, so Eyy1div1 = diy1, Eydy = dy, we can rewrite (52)
in the form presented by Campbell (1991) namely

A

Tt41 — Eiri1 = Ei Z )\iAdt+1+i - E; Z )\iAdt+1+i

i=0 i=0
- [Et+1 Z )\irt+1+i - By Z )\irt+1+i]
i=1 i=1
= (Brs1 = E) Y N (Adpsryi = Arigayi)  (53)
i=0

Equation (53) is informative. We observe that unexpected stock re-
turns are a function of revisions of expected future changes in dividends
and revisions of stock discount factors. Further, ceteris paribus an up-
ward revision in expectations of future returns leads to a fall in the price
today since for a given dividend stream this can only be generated from
a lower price today. The equation also demonstrates how revisions of ex-
pectations into the indefinite future impact on the current innovation in
returns. Under rational expectations these revisions are news. However
this creates a problem in empirical work which endeavours to estimate
the impact of empirical measures of news on unanticipated asset returns.
Clearly the impact of current news can have an ambiguous impact on
unanticipated returns depending on the implications it has for future
revisions to expectations. For example the news that the current money
stock is higher than anticipated could be interpreted as a signal for future
tightening of money stock or a move to a more relaxed regime. Similarly
output figures higher than anticipated could signal the end of a slump
or the beginning of an inflationary episode. This implies that without
knowledge of current and future policy regimes empirical estimates of
the impact of current news will be ‘non-structural’ so that the estimated
coefficients may be difficult to interpret.

We can illustrate two other important implications for the potential
behaviour of asset prices and returns using a modified example borrowed
from Campbell, Lo and Mackinlay (1997).
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Assume that the log of dividends is generated by the process
di+1 = pdi + upt1 (54)

where ;41 is a random variable and| p |< 1. So we assume that dividends
are a stationary process in this example.
Further assume that the stock discount factor is generated by

Eirip =T+ y (55)
where 7 is a constant and y; is generated by the process
Yo = Y1+ v (56)

where | a |< 1 and v is a random variable.

y¢ 1s an observable variable and might represent changing risk. Given
these assumptions we can substitute in (50) to obtain the solution for
the price of the asset. The log price of the asset (50) is given by

6 i
pe=g1— tE {ZOA [(1=X) digr4s — Tt+1+z‘]} (57)

The first term in the braces, substituting for future dividends, is given
by
(1= N)[Eidys1 + A\Eydiyo + NEdyis+...] =
(1= N[pds + Aoy + Np*dy +...]  (58)
and the second term by
— {Etrt_,_l —+ )\Et’f't_;'_g —+ /\QEtTt+3 “+... } =
—{FH+y + AT +ay) + NF+a’y)+...} (59)
so that substituting in (57) we obtain

6 (I-=XNp T Yt

p— d J—
s S S VR g W g v

- (60)
(recalling again that === =14z 42>+ 234+ ... for |z |< 1)

We can substitute (60) into (47) to obtain the solution for the one
period stock return as

_ 6 (1=XNp T Yi+1
T’t+1—)\<1_)\+dt+11_)\p T 1-w + (1= AN)detr

4 (1-=Np T Yt
- d - - 5 (61
(1—/\+t1—/\p T3 T-na) 0 OV
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Using (54) and (56) and simplifying this gives

AV

(1—-)a) (62)

Tegp1 =T + U1 + Yt —

The solution for log prices illustrates that when the variability of y;

is small, so that the variability of expected returns is small, this does not

imply that the variability of prices need be small. This is because the

denominator of the term in y; can be small. More formally, assuming

the covariance between y; and d; is zero, we have from (60) that the
variance of prices is given by

o2 (1 _ )\)2 2 2
2 _ ) 2 _ 9y
o, = = g\a)Q + TSV oy where o, = T (63)

2
Tu

where U?i =1 is the variance of dividends.

Clearly 032/ can be small but 0120 large.

We can also solve for the reduced form ARMA time-series repre-
sentation (see Time-Series Annex) of log returns and log prices in our
example.

Using the lag operator, and substituting for y; we obtain for returns

UVt )\’Ut+1

=7 — 4
e =T Ut T T TS aa) (64)

Multiplying out the lag operator we obtain

v Av
Tt41 = QT +T(1 — O[) + U1 — QU + (1 _t/\a) _ (1 _t-;\;) (65)

The summation of the two error terms on the right hand side of (65)
can be rewritten as a moving average error process of order one so that
observed returns follow an ARMA (1, 1) process. Depending upon the
covariance between news in dividends and news in returns the process
can exhibit positive or negative autocorrelation.

Employing a similar process for changes in asset prices we obtain the
ARMA representation for the level of the log asset price as (where L is
the lag operator)

pi(1— pL)(1 - aL)

_0-7MA-a)1-p)  (A-Npu(@d—aLl)  v(—pL)
- (1-)) * L= Ap T (96)

so that the level of the log of the asset price is described by an ARMA(2,
1) in this example.
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Although both returns and asset prices are forecastable in this ex-
ample there can be no presumption that the market is inefficient. The
crucial element in the definition is that abnormal returns should not
be forecastable in an efficient market. We will observe another exam-
ple of this next where the exchange rate has a predictable path in the
Dornbusch overshooting model even though the market is efficient by
construction.

OPEN ECONOMY MODELS WITH EFFICIENT FI-
NANCIAL MARKETS

In Chapter 10 we set out the general behaviour of macro models of the
open economy with efficient markets and New Classical price behaviour,
under fixed and floating exchange rates. Here we focus in more detail
on the behaviour of nominal exchange rates under floating, under vary-
ing assumptions about price behaviour. This will illustrate the role of
financial efficiency per se in open macro models.

Our model is based on that outlined by Dornbusch (1976) in his
seminal paper. For simplicity it is assumed that there is perfect capital
mobility between countries (i.e. transactions costs are negligible and
international assets are perfect substitutes). Consider initially a risk-
neutral agent who is faced with the choice between holding a domestic
or foreign bond for the duration of one period (say 90 days). The nominal
rates of interest in the foreign country and in the domestic country are
given by R; and RY respectively. Since the bonds are perfect substitutes,
asset market equilibrium requires that the expected rates of return on the
two bonds be equal. This expected rate of return has two components.
The first component is the interest rate on the bond, which we can
assume to be known at ¢; the second component is the expected capital
gain or loss from exchange rate changes during the 90-day period.

It follows that the speculative condition for equilibrium, known as
uncovered interest arbitrage is:

Ry = Rf + (ESi11 — S) (67)

where R;, RF are the domestic and foreign nominal interest rate, S;
is the logarithm of the current exchange rate (here domestic units per
foreign unit) and E;S;1is the expectation of the rate in period one (90
days in our example). A rise in S; in our notation here represents a
depreciation of the home currency. Equation (67) therefore implies that
the interest rate differential in favour of domestic bonds must be equal
to the expected depreciation of the exchange rate.
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For example, if the domestic currency pays 12 per cent interest (per
90 days) and the foreign currency pays 4 per cent interest, a domes-
tic investor buying foreign currency at the beginning of the period and
converting back at the end of the period will, assuming the domestic
currency depreciates by 8 per cent, expect to finish up with sufficient
domestic currency to make him indifferent between holding domestic or
foreign bonds.

There is also a forward market for foreign exchange in many exchange
rates (i.e. traders can at time ¢ contract to trade foreign currency at time
t 4+ 1). In the forward market, large transactors are required to put up
only very small amounts of money as ‘margin requirements’, so there is
no need to discount. Consequently, using a similar argument to the one
above, arbitrage implies the covered interest arbitrage condition that

Ry =R{ + (F, — S (68)

where F; is the logarithm of the forward exchange rate at time t for
period ¢t + 1. We note that the covered condition is riskless and holds
via arbitrage regardless of the manner in which expectations are formed.
Uncovered arbitrage is a speculative condition, hence the explicit as-
sumption of risk-neutral investors. Equating the covered and uncovered
condition we obtain that F; = E}S;11 so that the forward rate is a direct
measure of the market’s expectation of the future exchange rate. The
properties of the forward rate as a predictor of future spot rates has been
a focus of much empirical research as we will discuss below.

In the Dornbusch model it is assumed that prices in goods or labour
markets are in the short term ‘sticky’ with respect to changes in market
conditions. This could, for instance, be because of the existence of multi-
period wage or price contracts as in the New Keynesian model. It follows
from this assumption that purchasing power parity does not hold in the
short run. Purchasing power parity (PPP) or the ‘law of one price’,
states that in the absence of transport costs and other transactions costs
international arbitrage in goods should eliminate differentials between
the prices of goods in different countries. We discussed in chapter 10
on the open economy how this would not hold in the short run but
should hold in the long run, whether traded goods are homogeneous
across countries or differentiated and imperfectly competitive (PPP in
the long run but not the short is confirmed by numerous empirical tests,
e.g. Taylor et al., 2001).

Under PPP we would have:

S = pr — pf (69)

where p, pf" are the logarithms of the domestic and foreign price level.
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With perfect capital mobility and PPP, from (67) and (69), the equal-
ization of expected real rates of interest immediately follows:

Ry — (Eypir — pt) = R — (Ewpfiy — p7) (70)

Absence of PPP in the short run means that we may examine the
behaviour of the real exchange rate, x, defined as:

Tt = St — Pt —|—pf (71)

For simplicity we assume that output (in logs), real interest rates,
foreign interest rates and the foreign price level (in logs) are fixed and
normalised to zero; but this does not affect the features of the model on
which we focus here. The model is given by

Ry = EySip1 — S (72)
m; =my+m=p — R, (73)
Pt —Pi—1 = k(Se —pi—1) +uy (74)

where m; is a random monetary shock around 777, the constant average
money supply, and u; is a supply shock. Equation (73) is a conventional
demand for money function equated to money supply. Equation (74) is
an ad hoc price adjustment mechanism which captures the hypothesis
that the price level responds sluggishly to changes in the exchange rate,
via aggregate demand and its effects on the volume of net trade. The
specification has the convenient property that when k& = 1, PPP holds
instantaneously apart from the current supply shock.

When PPP holds instantaneously the model can be rearranged to
give

S, — 5EtSt+1 mf — Ut
FT+6) (149

(75)

Equation (75) will be recognised to have the same form as (31) above.
We solve this model under the assumption that agents have full current
information. The reduced form for the model is given by

km +my — (1 — k)mt_l = k’St + up — (5(Et5t+1 — St) +
6(1 — k)(Et—1S: — Si—1) (76)

Following the procedures outlined in chapter 2, the solution for the
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exchange rate in the full-information case is given by*
Sy = (1 — Z)m + 281 + apgmy + arme—1 + asuy (77)

where z is the stable root of the equation:

622 —2(6(1 — k) +k+6)+6(1—k)=0 (78)
and ag = k+5(1—z§+a(1—k)v a; = —(1 = k)ao, az = k+éz11—z)

We notice from (77) that, in the long run, when S; = S;_1, the elas-
ticity of the exchange rate with respect to an increase in the permanent
level of money supply is unity. In other words, in the long run the ex-
change rate depreciates by the change in 7. Given that 77 is a constant
(72) implies that R is zero in the long run, and hence (73) that prices
have the same response to 7 as the exchange rate. Equation (74) implies
that in the long run PPP must hold. Leading (77) one period and taking
expectations we obtain:

EtSt+1 — St = (1 — Z)(m — Sf) + aymy (79)

Equation (77) defines an expectations mechanism known as regressive
expectations. It informs us that when the equilibrium exchange rate is
above the current exchange rate, then expectations are revised upwards
and vice versa. The fact that regressive expectations can by choice of
the regressive parameter (1 — z) be rational is one implication of this
Dornbusch model. However, we should note that this property can hold
in rational expectations models only where there is one stable root; it
does not hold generally.”

We can substitute (77) into (71) and (73) to obtain

_ M+ 60 —2) +my —u— (1 —K)pra

St k+6(1—2)

(80)

4For the real interest rate differential to be constant, as investigated by Mishkin
(1981), an infinitely large intertemporal substitution response is required for either
a or B. The evidence does not support such responses; it is therefore not surprising
that Mishkin concludes from his reduced-form work that the differential varies over
time. Similar arguments apply to variation of the real interest rate within a closed
economy, as investigated by Fama (1975) for the USA; this evidence has now been
found (by Nelson and Schwert, 1977) to support non-constancy, which again is not
surprising. We may also note that the size of variation in both the differential and
the closed (e.g. world) economy level of real interest rates cannot be suggested a
priori; nor can the length of time to convergence (determined by z in this model as
influenced by all the parameters).

>Relative risk aversion (RRA) is defined as RRA = %)C_tl = 6 for the specifi-
cation of the utility function.
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Equation (80) illustrates another key insight of Dornbusch.

The impact of a change in the permanent level of money supply (77)
in the short run, ceteris paribus, is greater than unity except when k =1
and consequently greater than the long-run impact. This phenomenon is
known as ‘overshooting’. The rationale for this effect is that because, in
the short run, prices are at a point in time sticky or adjusting slowly, the
only way the money market can remain in equilibrium as the permanent
level of the money supply is increased is for the interest rate to fall.
However, a falling interest rate has to be associated with an expected
appreciation of the currency. Consequently the current exchange rate
has to depreciate further than its long-run value in order to give rise
to anticipations of an appreciation as it moves to its ultimate long-run
value.

This mechanism is illustrated diagrammatically in figure 14.2. Sup-
pose that at time ¢t = 0 the pound/dollar rate is $1 = £1. At time t = N
the authorities increase the level of the money supply by 100 per cent.
In the long run this causes the pound to depreciate against the dollar
to $1 =£2.0. However, in the short run the pound depreciates further,
to say $1 = £2.50 and then follows the arrowed path back to long-run
equilibrium. We notice that along the arrowed path the pound is ap-
preciating, but has always depreciated relative to t = 0. The possibility
that efficient assets markets, in conjunction with sticky wages or prices,
could give rise to volatile behaviour of asset prices was a principal insight
of Dornbusch and has been influential (see e.g. Buiter and Miller, 1981).

£ per $ A
A m
£2
£1
>
0 N t

Figure 14.2: Exchange Rate Overshooting
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We should also note from the solution for the exchange rate that,
while a positive monetary shock causes a depreciation of the currency, its
impact can be greater or less than unity, but since 77 has not changed,
there will always be an ‘overshoot’ of the long-run equilibrium. The
Dornbusch result applies to permanent (unanticipated) changes in the
money stock (T7).

Another important feature of the model is that the exchange rate has
a predictable path (77). However uncovered arbitrage was assumed in the
model consequently the asset market is efficient since expected abnormal
returns (in this example deviations from uncovered interest arbitrage)
are not predictable. This is another example where predictability of an
asset price does not violate market efficiency. In particular the exchange
rate does not follow a random walk, though this is sometimes assumed
in empirical work.

A number of authors have attempted to test the Dornbusch model
(see e.g. Driskill, 1981; Frankel, 1979; Haache and Townsend, 1981;
Demery, 1984), by examining the properties of reduced-form exchange
rate equations derived from structural models of the Dornbusch type.
The empirical results the authors report are unfavourable to the model.
However there are a number of problems with these tests, the main
one being that they all assume the regressive form for expectations,
which is in general incorrect (Minford and Peel, 1983). For example,
Haache and Townsend (1981) and Frankel (1979, 1982) specify models
in which lagged adjustment or wealth effects are introduced into the
demand for money function or lagged adjustment is introduced into the
interest arbitrage condition; in these specifications, expectations will not
be regressive. Box 14.1 shows that overshooting also can, but does not
necessarily, occur in equilibrium models.

Box 14.1

EXCHANGE RATE OVERSHOOTING IN EQUI-
LIBRIUM MODELS

We now examine whether exchange rate overshooting, which occurs
in the Dornbusch model as a result of disequilibrium in goods or
labour markets, must always be regarded in a real economy as oc-
curring as a consequence of such features. We will demonstrate that
this is not the case. Overshooting can indeed occur in equilibrium
open economy models. In order to explain this, we adopt the model
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of the previous section.

In keeping with the equilibrium framework, we assume that all
agents form expectations on the basis of the same set of macro in-
formation. This we date at ¢ — 1, and for simplicity ignore current
global information (but this does not alter our point).

Hence the exchange market equilibrium condition becomes:

Ei18t41— Si = Ry (1)
and the real interest rate differential, r, is defined as:
re =R — Ey—1piy1 +pe (2)

(We have for simplicity set the foreign real interest rate to zero.)
Demand for money is:

my = py + Yy — ARy (3)
Money supply is:
Amy = € + Ay + Avy (4)
where
ATy = wy (5)

This money supply function now allows not only for (unanticipated)
temporary changes in the level of money (v) and once-for-all changes
in the level (e) but also for once-for-all changes in the steady state
rate of increase (u). It will thus permit us to examine the different

o0
reactions to these shocks. (note m; =5 €—; + My + v where

=0

o0
Ty =y Ut—q)

i=0
From the definition of real interest rates and the real exchange rate,
x¢y = St — pt, and from (1) we have:

(Rt — By _1piy1 +pi) = Bt—1St41 — By 1peyr — (St —pt) =
By 1wipq — a2 (6)

i.e. the real interest differential must equal the expected real depre-
ciation.
Now complete the model with an IS and Phillips curve:

Yi = —ary + 6z (7)
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Y = Pre +y(pr — Ev—1pt) + oY1 (8)

Equation (8) has the full classical form discussed in chapter 3. Note

that neither o nor (8 is infinite, so that r will vary. The model has

been set up so that y = r = x = 0 in equilibrium. Notice that it

belongs to the same Mundell-Fleming family as that of chapter 10.

Define the superscript ‘¢’ as ‘unanticipated at t-1’; hence for exam-
ue

ple pi¢ = p; — E;_1p:. Equations (6)—(8) can be solved as a recursive
block in terms of py® to give:

Ty = w1 + mopy© + (M1 — pmo)pity (9)
where 70 = g ™ = 070% and p is the (assumed
unique) stable root of the characteristic equation

ao + 6 ola+96)
Ju+

a+ 0 a+ 0

r and y have similar solutions: a first-order moving average in p“¢

and first-order autoregressive coefficient p. From (3) using these, we
obtain:

w?—(1+ =0 (10)

P = qmy* (11)
i = mogmi© (12)
where ¢ = [1+>\+>m01_~_(a+5)770] is greater than 0 and less than 1. The

nominal exchange rate depreciation is:
S =t 4 pi = g(1+ mo)mi© (13

where m}'© = e + us + vt
We can usefully rewrite

a+B+0+y
(a+B8+86)1+N)+~vA+a+d)

which makes it clear that the value is positive and greater or less than
unity depending on all the impact parameters (however if A+ o+ 6
is greater than 1 then it must be less). Notice that overshooting
properties occur in the broad sense that both the nominal and the
real exchange rate depreciate in a ‘volatile’ manner in response to
positive money shocks.

For the case where the money supply is growing over time we define
overshooting as a reaction of the nominal exchange rate by a greater

q(1 +mo) =

(14)
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proportion than the change in the (current) equilibrium nominal ex-
change rate, i.e. that which would prevail were the present money
supply difference to be maintained in perpetuity, apart from ele-
ments expected to be reversed (v).

On this basis, we can determine from (13) that:

1. The exchange rate may respond more than proportionately to
a once-for-all change in m (e;), and so the equilibrium exchange
rate. This is the overshooting considered by Dornbusch (1976),
which deals with surprise shifts in the permanent level of m.

2. It also may respond more than proportionately to a rise in
m which is due to a permanent rise in its growth rate (u),
However, since there is no way that speculators can distinguish
between € and u shocks when they occur, the reactions to both
are the same.

3. Tt also responds to a temporary change in m (v), which on
our definition does not change the equilibrium exchange rate.
This is also a form of overshooting, though not that dealt with
by Dornbusch.

All these types of overshooting in response to monetary shocks are
qualitatively the same as those in the ‘sticky price’ models of Dorn-
busch and Frankel, yet they emerge from an equilibrium model. By
altering our assumptions about the availability of current global in-
formation, these results could be easily ‘enriched’ to give a variety
of potential overshooting responses; substantial overshooting is ex-
hibited in empirical application by an equilibrium model of the UK
economy (Minford, 1980, the Liverpool model). To sum up, volatility
of the nominal exchange rate (overshooting), as well as of the real
exchange rate and real interest differentials, is not prima facie evi-
dence of ‘price stickiness’, ‘disequilibrium’ or ‘inefficiency’ in goods
or labour markets.

Distinguishing Equilibrium from Disequilibrium Models of the Ex-
change Rate?

For good measure we can show that, on the basis of a reduced form
exchange rate equation on its own, it is not possible to determine
whether it comes from an equilibrium or disequilibrium model. For
this purpose, we set up two models identical in all respects except
in their ‘supply’ behaviour.

The first model is the one just dealt with; it consists of the demand
for money function (3), money supply function (4), efficient market
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condition (1), and IS curve (7) and its supply curve is an equilibrium
one (8). The second model consists of the same equations apart from
(8) where it has a sticky price Phillips curve like Frankel’s, namely:

Pt — Pi—1 = bxi—1 + ATy (15)

(We also assume in the spirit of disequilibrium models that specu-
lators have full current information, and condition the expectations
operator throughout on the basis of current information.) It turns
out that the solution for x; in this model is:

[er + Mg + (1 — pi ") (v — v-1))]
o (A + )

Ty = HoTi—1 + (16)
where p, is the stable, u; the unstable root of the characteristic
equation:

Ay =6

221 — 1-
w2 et

7[1+)\]+(5:

At o 0 (17)

Compare this to the solution for the equilibrium model:
xy = @1 + Togmy© + q(m1 — mo)miS, (18)

This shows that it is not possible to distinguish between the equi-
librium and disequilibrium models on the basis of the reduced-form
(real) exchange rate equations alone; both are ARMA(1,0,1) time-
series models (see Time Series Annex). It follows that the models
can only be distinguished, if at all, on the basis of full structural
estimation. This is another example of ‘observational equivalence’
(see chapter 15).

EMPIRICAL EVIDENCE ON MARKET EFFICIENCY

Our interest here is in the empirical evidence that testing for market
efficiency sheds on the rational expectations hypothesis. In these tests,
either part of the joint hypothesis may fail: the model of equilibrium
expected returns or the RE hypothesis. But this is unavoidable in testing
a hypothesis about expectations which are not directly observable.
Modelling of the equilibrium expected return is clearly crucial in em-
pirical tests of market efficiency. As the examples above have illustrated
asset prices or returns can have predictable patterns without necessarily
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violating the efficient markets hypothesis. The crucial element is that
abnormal returns should not be systematically predictable.

Since a property of rational expectations is that any difference of
outcome from the expected outcome is unforecastable from available
information, we have that :

Ry = Bt Ry + v (81)

so that v;; is independent of E;R;;, the rational expectation. Substitut-
ing the determinants of E; R;;from CAPM, for example, gives:

Ry = Ry + qir + v (82)

where ¢;+ is the risk premium. If g; were constant (82) can be esti-
mated by ordinary least squares (with the coefficient on R; constrained
to unity), and the estimated error term, v;;, should be independent of all
information available at the beginning of period ¢: not merely past v;;
(weak-form), but also all relevant data (such as money supply, inflation
and growth). This is known as an orthogonality test. It is also possible
to estimate (81) freely, in which case the coefficient on R; should not be
significantly different from unity, a further check on the joint hypothe-
sis: the other tests apply as before. A further implication of (81) is that
any trading rule, TR (a systematic rule for trading assets), which uses
information at the start of ¢, including past v;;, to buy and sell asset 1,
intending to make profits because

E[R;y — E,Ry] | TR >0 (83)
must fail under the efficiency hypothesis since by (81)
E[R;; — E:Ry] =0 (84)

Since under the efficiency assumption any trading strategy has an
expected abnormal return of zero it must do worse, given the increased
transactions costs associated with an active rule compared with a trading
strategy of buy and hold (do nothing). The returns to each rule differ
by expected transactions costs.

An important class of models in which efficiency prevails (abnormal
returns are unforecastable) is that of martingales. Formally if a variable
Z, is described by the stochastic process

E[Zii | Ze 201, ... = Z, (85)
or

E[Zy1 — 24| 2. Z4—y,...] =0 (86)
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it is known as the martingale property.
The process

Zig1 = Zy + U (87)

is therefore a martingale. The error term has the property that Fyus 1 =
0. The error can exhibit structure such as time varying heteroskedasticity
(e.g. ARCH effects — Time-Series Annex). If a constant term is added
to (87) it is known as a submartingale. The terminology of random
walk and martingale are often interchanged. In fact a random walk as
conventionally defined is a stronger concept in that the error term is
assumed to be independently and identically distributed (iid).
So the process

Ziy1 =2+ a+uppq (88)

where « is a constant and Fyuy+1 = 0, is a submartingale and a random
walk if uzyq is iid.

THE RATIONALE FOR MARKET INEFFICIENCY

Broadly the implicit mechanism involved for the market to be efficient
in the sense of Fama is that if asset markets were not efficiently aggre-
gating and processing information the disparity between fundamental
values and market prices would present traders with profit opportuni-
ties. Rational speculators it is argued will, essentially instantaneously,
drive asset prices back to their fundamental values.

The case for market inefficiency rests on either or both of the pre-
misses that prices of assets move when there is no new information con-
cerning fundamentals and that the action of speculators may not move
asset prices towards their fundamental values.

Some empirical observations that are offered as consistent with these
premisses are market crashes such as October 19th 1987 when world
markets fell around 20 per cent without apparently any important news
being evident which could account for the fall, or sustained rises in prices,
known as bubbles, that are seemingly inexplicable in terms of market
fundamentals.

Also it is observed that many trading decisions are based on past
prices. Chartism, the extrapolation of past prices, is widely employed as
the basis for trading rules. In addition, there is extensive use of stop-loss
orders, whereby an asset is sold if its price falls by a pre-specified amount
as well as the growth of dynamic hedging strategies such as portfolio
insurance where investors buy (sell) into rising (falling) markets. Whilst
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none of these activities necessarily imply market inefficiency they raise
the question as to whether informed rational speculators are arbitraging
out the trading rules of any uninformed or irrational traders; if they are
not, then inefficiency may be present.

The first theoretical model of inefficiency we examine is that of ra-
tional bubbles.

SPECULATIVE BUBBLES

History is replete with examples where asset prices have exhibited dra-
matic increases then falls which it is argued are not readily explained
by movements in the ‘fundamentals’ of the asset such as the expected
future dividend stream. One example is the South Sea bubble in the UK:
in the 18th century the stock of a company which traded in the South
Sea experienced exponential price increases before plummeting in value.
Another is the tulip bulb episode in Holland in the late sixteenth century
where (single) tulip bulbs were exchanged for land and gold before tulips
ultimately became near worthless (though see Garber, 1989).

It is argued that these episodes represent speculative bubbles in which
the anticipation of future capital gains leads to spiralling upward price
movements before the bubble eventually collapses or pops and the price
exhibits dramatic falls. Since the 1980s there has been a considerable
amount of theoretical and empirical work on speculative bubbles. Our
purpose in this section is to provide an introduction to this literature;
our discussion is related to our earlier one in chapter 2 where we showed
that rational expectations with expectations of future variables can have
bubbles in their solution.

We assume for simplicity that investors are risk neutral so that via
arbitrage expected returns are equal to those on a riskless asset with
rate of return R, assumed constant, so that EiRiyq1 = R. Given these
assumptions we obtain (31) above, which we reproduce for convenience:

P, = L EPii1+ ! E.D 89)
t—(1+§) t4t41 I+7%) tDt41 (

Assuming rational expectations and solving this model forwards N
periods as in 33 we obtain

P, =E, iv: Divi
= (1+R)

The second term in (90) is the discounted value of the stock price
N periods in the future. In the absence of bubbles as we let N go to

EtPt+N
(1+ R)

(90)
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infinity we assume that this term goes to zero. If so, the current asset
price is equal to the expected value of the stream of dividends into the
indefinite future: this expression is the fundamental of the process, F;.

The idea of speculative bubbles is that equation (90) is also consistent
with rational expectations solutions other than the fundamental solution.
If we try the solution

P=F + B (91)
in (89) we find that as long as B; follows the process
(1+R)B; = E;Biy1 (92)

it is a valid mathematical solution to (89).
By substitution of (91) in (89) we obtain

1 1 1
P=F+Bi=——FB1+ ——FFi.1+ ——FE;D
(0 t t WD) tBe11 W) thq1 ) tDi41
(92) is consistent with this and the solution form for
1
t i+ thiq1 1+ tDi11

is the same as (90) where % tends to zero as N tends to co. In
other words if agents believe that the process B; is driving asset prices
then it will be a “rational” solution, a “self-fulfilling prophecy”; notice
that it implies Py ny = EiFyyn + Ei B4y which explodes endlessly,
so that the bubble cannot be expected to burst ever.

As a consequence of the rational expectations assumption

Bii1 = EiBiy1 + €41 (93)

where €;11 is a random error.
Substitution of (92) into (93) gives

Bt+1 = (1 + E)Bt + €t+1 (94)

(94) makes clear that the deterministic solution for B is an asymp-
totically explosive process. It is therefore important that there be no
transversaility condition putting a limit on this process; such a condi-
tion was how we ruled out bubbles in chapter 2.

We can also write the solution for the bubble in the form (see Salge,
1997)

By = (95)

at
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1_

(1+R) and

where o =

E M1 = M, (96)

implying that M, is a martingale process.
Leading (95) one period and taking expectations, noting that % isa
deterministic process, we obtain

Ey My
attl

M, tB B
:from(96)—t=a LA 2

EiBi1 = =
+ attl ottt o

(97)

Consequently a bubble contains a martingale component and any
process for M; satisfying this condition is a valid rational bubble.
A general form of a stochastic martingale process is given by

My = p,My_1 + ugvy (98)

where the random variable p;, has conditional expectation that E[p, |
I;] = 1. Other assumptions are that E{v;4;} =0, i =1—mn, , E[p,M, |
Ii] =0, Elpyw | I] =0, Elpyw | It] = 0, ElwM,; | ] =0, Elugvy |
It] = 0, E[UtMt ‘ It] =0.

These assumptions establish the independence of all stochastic vari-
ables in all leads and lags. No restricting assumptions are required con-
cerning the nature of the random variable u,.

Suppose u; = 1; define a random variable h; that is normally dis-
tributed with mean p and variance o7. We can then exploit the property
of conditional log normality and define p, for any arbitrary constant A
as

()] .

because

2 2
Ao

EeMt — ettt — At —3 (100)

Taking expectations of (99) the condition Ep,,; = 1 is satisfied.
Consequently we can write the martingale process of (98) as:

Ahe—( X -i-&EL
Mt :e[ ¢ ( a 2 >:|Mt71+vt (101)
Substitution of (101) into (95) gives the implied bubble as:

2.2
Aoy

B = e () [ (102)

where ¢; = 2% and e~ loga — é
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(Erer+; = 0 for ¢ > 1. Note substitution of M; from (95) into (98)
(with u; = 1) gives B; = a™'p,B;_1 + 2%; employing the defintion of p,
from (99) we have (102)).

Several different types of bubbles can be obtained exploiting the in-
sight that rational bubbles include a martingale process. In fact any
process that follows a martingale process can be included in the bubble.

For example suppose the fundamental can be described by a martin-
gale process

Ft = thl + 915 (103)

where 6, is a random variable.
In this case we can let M; be:

F,
M, = F; so that the bubble is B, = — (104)
(0%

For more general specifications of fundamentals the method is to
substitute appropriate random variables for h;. For example let us add
a constant component to fundamentals so that they follow the process

Fr=F_1+up+mn (105)

where 7, is N(0, 0%). In order to find the bubble that corresponds to
this process we inspect the general bubble formulation (102). We can
substitute for the variable h; in this formulation so long as the process
we substitute in has a mean of u and a variance o2, because for these
parameter values we can obtain the martingale process (101). Fy — Fy_4
in (105) has a constant mean () and variance 0% so we can substitute
F; — F;_; for h; into the general bubble formulation (102) (with ¢, =0
assumed zero here for simplicity) to obtain

2253
2242 AF— <)\p+—h+ln a) t
By [A(Fz—szl)—<>\u+T]"+1na>] [ 2

=€
2

Bi_1 )\Ft_1—</\u+Ta’2‘+lnoc> (t=1)
e
(106)

(106) implies that the bubble process in fundamentals corresponding
to the fundamental process (105) is given by

22,2 2252
[AF17<)\;L+Th+lna> t} [)\Ft7<)\p‘+Th>t71nat}

B, =e =e (107)
If fundamentals follow the geometric process

InFi—InFi oy =p+n, (108)
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where 1, = N (0, 0%), we obtain following the above procedure

2,2
B, {A(ln F,—In Ft_l)f()\,qu%#»ln a>]
=€ =
t—1
A202
6)\ In th()\p,Jr > h 4 1n a) t
= (109)
An Fy_1— ()\,qu > b 41n a) (t—1)
(&
which implies
252 220
AlnFt—()\/H- 3 +1na>t —[()\u-i- h)t—lnat]
B =e : = Fe ’ (110)

(note ernFt = F)). We observe that if Ay + @ + Ina = 0, then the
bubble process is given by

B, = F} (111)
Alternatively if A =0
1

When a bubble depends on its own value in the previous period it
is called a Markovian bubble. When the bubble depends on fundamen-
tals it is called an intrinsic bubble (Froot and Obstfeld, 1991). When
the bubble depends on arbitrary processes it is called an extrinsic or
extraneous bubble.The solution for extraneous bubbles follows the same
procedure as for intrinsic bubbles. For instance if the extraneous pro-
cess, S, follows a martingale process then the rational bubble is given
by B; = % Salge (1997) demonstrates how to solve for bubbles for the
general ARMA specification of fundamentals or extraneous variables.
Depending upon the specification of A a variety of different bubble pro-
cesses are feasible.

If bubbles were non-stochastic, €41 = 0, then the solution to (92) is
simply

By = By(1 + R)* (113)

so that the solution for the price would simply embody a determinis-
tic explosive component and would in principle be readily amenable to
statistical tests.

Whilst the possibility of such deterministic bubbles have been inves-
tigated empirically for periods of hyperinflation before monetary reform
(Flood and Garber, 1980), it would appear that bubbles of a determin-
istic form are not features of asset or other prices. As a consequence
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bubbles would not apear to be plausible empirically unless there is a
significant probability that they will collapse after reaching high levels.

Blanchard (1979) and Blanchard and Watson (1982) proposed a prob-
abilistic bubble that can embody this feature. Essentially there are two
regimes which occur with constant probabilities ¢ and 1 — q. In the first
state (A) the bubble survives with probability ¢ and continues to in-

crease at an expected rate of FyBy1/A = %. In the second state

(C), with probability 1 — g, the bubble collapses so that F;B;41/C = 0.
Adding stochastic terms we have

(1+R)B,

Byl = + €:41 with probability ¢ in state A (114)

and:
By+1 = €141 with probability (1 — ¢) in state C (115)

where the error has the property that Fie;11 = 0 As a consequence we
have

EiBui =g (%) (- g0 (116)

We note from (116) that the bubble has the form of equation (92) and
is therefore a valid rational expectations solution. In addition we observe
that in state A the bubble grows at a faster rate on average (1) than the
non-probabilistic bubble in order to compensate for the probability of
collapse. Collapsing bubbles are consistent with the analysis employing
martingales; we simply define the process

M, = P M1 + ugvy with probability = (117)
™

and
M; = uyv; with probability 1 — 7 (118)

We can also derive the expected excess return, which is defined as
the return on the asset which incorporates the bubble minus the rate of
return on the riskless asset in regime A and C. Defining the expected
excess return at the end of period one as X, 1 = E;R;;1 — R, then from
(89)

X — EiPiy 1 + By Dy
t+1 = )

- (1+R) (119)

Taking expectations at time ¢ of (91) at time ¢ + 1 we obtain
P =B P + BBy (120)
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where
~ Diyit1 o~ Diyit1
i =6 {3 el - m {3 2
now
EiFiy1+ By Dy = EBy i DLZill + EiDiyq =
~ (1+R)

(1+R)F, =(1+R)(P,— By) (122)
so substituting (122) and (120) into (119) we obtain

1+ E)(Pt — Bi) + E:Biyq
P,

In regime A we substitue for E;B;1 from (116) into (123) to obtain
expected excess returns as

Xip1 = ~(1+R) (123)

(1 +§)Bt(1 —q)
qPy

In regime C' we substitute for E;B;y1 from (116) into (123) to obtain
expected returns as

X1 = (124)

(1+R)B,

B (125)

Xip1 = —

We observe from (124) and (125) that expected excess returns differ
substantially in the two periods. However expected excess returns are
zero across the two regimes. Rational bubbles do not create a predictable
pattern in excess returns; rather they create volatility in prices.

Whilst the the above probabilistic bubble has the property of collaps-
ing, Diba and Grossman (1988) show that the impossibility of negative
rational bubbles in stock markets (because of the implication of a neg-
ative expected asset price in the future which violates limited liability)
implies that a bubble once collapsed can never restart. Essentially if
the bubble takes a zero value, then from (92) its expected value in the
future is zero. Because negative values are ruled out for stock prices this
implies that the average of the positive values must be zero, but this is
a contradiction, so it can only be zero if it takes the value of zero in all
future periods. This point also carries the implication that if a bubble
exists today it must have always existed, i.e. since the moment trading
began.

Evans (1991) and Van Norden (1996) have formulated processes for
bubbles that meet this theoretical point. Van Norden allows for the
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possibility that the bubble is expected to collapse only partially in state
C and that the probability of a bubble’s continued growth falls as the
bubble grows

Van Norden specifies that the probability of the bubble’s continued
growth is given by

. dq(By)
=q(B th 0 126
qt Q( t)WI d|Bt|< ( )
(the absolute value of the bubble to allow for negative bubbles in markets
such as exchange rates.).
In regime C' the bubble is expected to collapse only partially and is
given by

E;B;y1 = u(By) in state C' with probability g, (127)

where u(.) is a continuous and everywhere differentiable function such
that u(0) =0 and 1 > %B'it) > 0.
In state A the bubble is expected to grow at rate

E,Bis = (1; li))Bt _a qéﬁgz])“(&) with probability 1 — g, (128)
It is easy to verify that (128) and (127) imply equation (92). We can
deduce from (128) that the expected value of the bubble in the surviving
state is a decreasing function of the probability of survival q(B;). As a
consequence, as with the Blanchard bubble, the greater the probability
of collapse the larger is the expected gain on a surviving bubble in order
to compensate the investor for the possibility of collapse.

Van Norden’s specification of the bubble process is interesting in
demonstrating how the probability of collapse can be readily endogenised,
and also how the process can be modified so that the bubble is not nec-
essarily zero in the collapsed state. Both these features could be relevant
in empirical work on detecting bubbles.

Evans formulates a bubble that is always positive but nevertheless
periodically collapses. The Evans bubble takes the form

Bt+1 = (1 +E)Btut+1 lf Bt S ]{,’ (129)

and

5+ 0i:1(1+ R)[B, — (1+ R)"'6)

7 U1 if Bt >k (130)

By =

where k and § are positive parameters with 0 < § < (1 + R)k and w41
is an exogenous independently and identically distributed (iid) positive
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random variable with Fyu;y1 = 1. 6441 is an exogenous i.id Bernoulli
process( independent of w) which takes the value unity with probability
q and zero with probability 1 — q.

Taking expectations at ¢ of (129) we observe that the bubble is equa-
tion (92) when it is in the regime where B; < k. When B; > k the bubble
has the expected value of

FiBuy = [o4 LB +F)15}] = [<1 + BB, 6(1—q)

q ¢ g
with probability ¢ (131)

and
E:Biy1 = 6 with probability 1 — ¢ (132)
so that when B; > k

E,Bii1=q ( +q§)Bt - 6(1; 9 +(1-q)6=(1+R)B, (133)

Consequently the bubble satisfies condition (92).

The Evans bubble has the property that when B; < k it grows at
mean rate 1+ R. When B; > k the bubble ‘erupts’ and grows at a faster
mean rate as long as the process continues. When the bubble collapses
it falls to a mean value of § and the bubble process begins again. Evans
notes that by varying the parameters ¢, k and ¢q one can create bubbles
where the frequency with which the bubble erupts, the average length
of time before collapse and the scale of the bubble vary. An example of
an Evans bubble is depicted in Figure 14.3.

An important feature of the Evans bubble is that standard empirical
tests for bubbles based on unit root and cointegration methods (Time-
Series Annex) may not detect bubbles when they are present. Evans
simulated bubbles and applied unit root tests to the simulated bubbles.
Even though bubbles are asymptotically explosive for ¢ < 0.75 for more
than 90% of the simulated bubbles of length 100 observations, statistical
tests for unit roots rejected the hypothesis of a bubble in favour of a
stable alternative.

More recent empirical work has endeavoured to apply alternative
econometric approachs such as switching regime regression models to as-
certain the presence of bubbles (Hamilton, 1994; Van Norden 1996; Van
Norden and Vigfusson, 1998) given that the Evans-type model describes
behaviour for different regimes. These statistical methods appear to offer
greater promise of detecting bubbles. As yet however it is probably fair
to say that the different empirical methods which have been applied to a
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10 20 30 40 50 60 70 80 90 100
Bubhle Component B for Advanced Simulation

Figure 14.3: Example of an Evans Bubble

variety of different asset markets including stock and exchange markets
have not generated any consistent evidence of speculative bubbles.

It should be noted that theoretical work by Tirole (1982, 1985) has
demonstrated that bubbles cannot arise in certain models. For example
in an overlapping generations model with an infinite number of finite-
lived representative agents, Tirole shows that when the interest rate ex-
ceeds the growth rate in the economy (so that it is dynamically efficient)
a bubble would ultimately violate some agents’ budget constraints. It
would appear that bubbles could only exist in economies which are dy-
namically inefficient if the model is of the representative-agent type and
agents are rational. From this perspective Froot and Obstfeld (1991)
suggest interpreting empirical tests for bubbles as tests of the rational
expectations assumption.

We can put this another way. RE models are, generally, ‘over-
identified’. That is, everything in the reduced form is derived from
structural relationships and more restrictions exist than reduced-form
parameters; the reduced-form errors are combinations of the structural
parameters and structural errors. Errors such as bubbles are not present
in the structural model and hence should not appear in the reduced form.
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Only fundamentals are included in it.

Should we write down a structural model in which some bubble vari-
able is allowed to enter, then we must ensure that it satisfies both the
transversality conditions on the model (including private and budget
constraints as they tend to infinity) and the optimality conditions. For
example, as we showed in chapter 2, deterministic explosive bubbles in
prices will violate reasonable government limits on inflation and so will
be ruled out from the start. In the Blanchard and Watson example re-
viewed above, of a stochastic bubble, at least one of the paths must have
a positive probability of continuing indefinitely for the bubble even to
begin. Is such a path consistent with such limits? Above we noted the
objections of Tirole to bubbles in one context, and the caveats expressed
by Obstfeld and Rogoff. In each case of a bubble we must ask whether
theory as above permits it.

When we turn to empirical testing, we can note that the ‘forward
solution’ of the model discussed in chapter 2 has the form of a bubble.
One can for example write down a model of prices in which a large
positive future shock (to the money supply, say) is expected with some
probability; as the period approaches the price level rises until at the
period it either jumps upwards if the shock occurs or collapses if it does
not. Distinguishing this non-bubble solution from a supposed bubble
clearly is difficult. Remember a bubble relates to what people in markets
expect for the future; this could well relate to an expectation about a
fundamental.

The difficulty with bubbles is therefore both theoretical and empir-
ical. This critique of bubbles within rational expectations models does
not of course extend to models where expectations are not rational; here,
by construction, people may believe in curiosa — ‘fads’ and so forth. To
such models we now turn.

Fads and Noise Traders

Shiller (1984), (1989) and (1997) has emphasised the importance of mass
psychology in financial markets with the implication that investors may
exhibit fashions or fads. A fad is a depature from fundamental values
due to ‘psychologically’ induced changes in market sentiment. We first
illustrate the implications following the model in Fama and French (1988)
and Cutler, Poterba and Summers (1990, 1991).

Let

Pt = Ft + e (134)

where P; is the return or price of an asset, F; is the fundamental value
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and e; is a fad. Fundamentals are assumed to follow the process
Fi=F_1+h (135)
The fad is described by the stationary process
er = pei_1 + v (136)

where p is a positive constant less than unity and v; is a random error.

Cutler, Poterba and Summers (1991) consider the case where a proxy,
F, is available to measure fundamentals, given that in applied work we
typically do not measure the fundamentals with precision or are employ-
ing approximations to the theoretical model. Let

F, = F} +w, (137)

where w; is the measurement error assumed to be random.
Differencing (134) and substituting from (135) and (136) we obtain
the true reduced form for AP; as

AP, =(p—1)(Pi—y — Fi—q) + hy + ¢ (138)

Consider the regression estimate of 3 in the relationship
AP, =a+ ((P—1 — F )+ 0; (139)

The regression coefficient will have a probability limit of

(p—1)Cov(Pi—1 — Fy1, Py — F} )
var(Pi—1 — Ft*71)
_(p—=1)Cov(es_1,e;1 +wi_1)
o Var(ei—1 +we—1)

6=

__p-tearle)
var(e) + var(w)

The implication is that changes in asset prices will be predicted by
lagged deviations of the price from its proxy fundamental (for which in
their empirical work Cutler, Poterba and Summers (1991) employ the
log of the real dividend). In addition prices or returns can be shown to
exhibit a predictable pattern.

Of course predictable patterns in the difference between prices and
fundamentals raises the issue of why rational speculators do not arbitrage
the process. It is implicitly assumed that they face some sort of liquidity
constraint preventing them from dominating the market. However, it is
also possible that they do so arbitrage, so that the fad occurs but is then
removed from the data next period. This would correspond to p = 0
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in our example. In this case, prices could differ from their fundamental
value so implying inefliciency, and yet the difference between the price
and fundamentals could still be unpredictable. This distinction points to
a caveat in the interpretation of efficiency given by Fama; Shiller makes
the point that the absence of predictability does not necessarily imply
market efficiency. Clearly the existence of systematic abnormal profits is
sufficient to invalidate efficiency. However absence of predictable abnor-
mal returns could be consistent with market inefficiency if prices were
more volatile than was consistent with the volatility in the fundamental.
Bubbles or some fad processes are consistent with this interpretation
of inefficiency. Efficiency therefore requires the complete elimination of
fads from the price process (e; = 0); otherwise a trading rule operating
on P; = F; would make money (this is a particularly simple rule, viz. of
current arbitrage).

Other models of market inefficiency assume the coexistence of hetero-
geneous traders. In these models there are smart traders, the rational
speculators, as well as the noise traders. The noise trader trades on
fads or charts or other extraneous information (‘noise’). The key re-
quirement of the models is that arbitrage activity by the smart traders
is limited. This can be a consequence of the assumption of risk-averse
rational speculators combined with a micro-structure rationale where
for example arbitrageurs have limited capacity to borrow funds due to
signalling problems (see e.g. Shleifer and Vishny, 1997).

The consequence is that arbitrage activity by the rational traders
may not eliminate the influence of the noise traders from the outcome
for returns or prices so that the market is inefficient in aggregate (see
e.g. Figlewski, 1979).

Other specifications of this type of model have the informed traders as
not holding rational expectations but rather forming their expectations
on the basis of a relatively well-informed rule such as PPP deviations
for exchange rates (section below) or price-dividend deviations for stock
prices using say the Gordon (1962) model . If it is assumed that the pro-
portion of the two types of agent in the market varies with the extent of
the deviation of the asset price from its long run value, then these mod-
els can exhibit complex nonlinear dynamics of the asset price including
chaotic outcomes (Time-Series Annex; and e.g. De Grauwe, Dewachter
and Embrechts, 1993).

Some recent models of asset price determination investigate more for-
mally the micro-structure determining asset prices. An important class
of models consider the implications of assuming that traders do not be-
have competitively and take prices as given. The models are solved using
the game-theoretic Bayesian Nash equilibrium concept where the strate-
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gies of other traders rather than prices are taken as given. These models
allow analysis of strategic interactions in which traders take their price
impact into account (see Brunnermeier, 1999, for a survey). In essence
each trader recognises that large trades will move prices against him.
The models incorporate features such as asymmetric information, noise
traders, speculators, market-makers and explicit assumptions concerning
the mechanism by which traders submit orders to trade. They produce
many interesting insights.

When it is assumed that traders have short investment horizons, per-
haps due to financial constraints which make arbitrage activities cheaper
for short-term assets, herd behaviour can result (see e.g. Froot, Scharf-
stein and Stein, 1992). In addition strategic interaction can give rise to
rational profit-maximising speculators, accentuating asset price volatility
caused by noise traders as they strategically exploit feedback elements
such as herding (see e.g. De Long, Shleifer, Summers and Waldman,
1991).

The models can also generate market crashes as in e.g. Romer (1993)
where information is heterogeneous and investors are uncertain about the
quality of information other investors have.

Although this literature is rich in insight and can provide a rationale
for market inefficiency, it remains an empirical issue whether efficiency
as defined by Fama is violated. We now turn to some empirical tests.

EMPIRICAL TESTS OF MARKET EFFICIENCY

There has been an enormous amount of empirical work which has ex-
amined the efficiency of asset markets including gambling markets (see
e.g. Sauer, 1998; Thaler and Ziemba, 1987). Violations of the efficient
markets hypothesis are typically referred to as anomalies. The anoma-
lies reported may constitute evidence of abnormal returns or violations
of the rational expectations assumption. Before considering some of this
evidence it is important to note that the dangers of data-driven infer-
ence or data-snooping whilst always a consideration in applied analysis
(see Leamer, 1978, for a discussion of pretest bias) needs to be given
formal weight when interpreting some anomalies as demonstrated by
Sullivan, Timmermann and White (1999, 2001). In the limited sample
sizes typically encountered in studies, significant relationships or sytem-
atic patterns are bound to occur if the data are analyzed with sufficient
intensity. For example the orthogonality property of rational expecta-
tions will be rejected by the usual statistical criteria five percent of the
time. Clearly if authors are searching in the universe of variables and
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significant rejections are reported it could appear that the hypothesis is
invalid even though it is true.

An apparent rejection of the market efficiency hypothesis which is
data-driven is the finding reported by numerous researchers that stock
returns exhibit seasonal regularities (see Sullivan, Timmermann and
White, 2001, for key references). Abnormal returns are related to day of
the week, week of the month, month of the year, holidays etc. If these
results have validity then the efficient markets hypothesis is in serious
trouble given it is ‘such a simple violation’.

The issue is one of ‘data-snooping’ — in other words, researchers
cannot avoid being influenced by their sample of data. They ‘find’ rules
that are in that set of data by repeated trials. This will occur even
when some data is kept aside — because this data too is known about to
some degree and trials on it may lead to respecification of the rule on
the used data before a renewed trial. To control for this problem the
researcher must not allow the data to influence his choice of rule. Thus
all possible rules must be given an equal chance to work on the data;
some of course will work well for particular samples even if they do not
in general work at all. By doing this exercise for all rules for repeated
samples one may calculate the probability of a rule ‘doing well’ in a given
sample. Clearly for a rule to be considered significant it must do better
than this. This exercise has been carried out by Sullivan, Timmermann
and White (2001) for calendar effects.

They construct a universe of calendar trading rules, using permuta-
tional arguments that do not bias in favour or against particular calendar
rules.They consider some 9500 calendar effects. They imagine that this
set of calendar rules was not inspected by any one individual investor
or researcher. Rather the search for calendar rules has operated sequen-
tially across the investment community or researchers with the results
of investors or researchers being reported through the survival of the
‘fittest’ calendar rules. Their findings are striking and important. They
find that although many calendar rules generate abnormal returns that
are highly significant when considered in isolation, once the dependencies
operating across different calendar rules are allowed for, then the best
calendar rule is no longer significant. In addition they consider a smaller
number of 244 rules that remove any doubts that irrelevant rules are
pooled with‘genuine’ rules in the 9500 experiment. Their results are the
same. The apparent statistical significance of the best calendar effects
is not robust to data-snooping effects.
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‘Weak-form efficiency tests

Weak-form efficiency in the sense of Fama implies that the expected
returns from a trading rule based on past prices should be less than those
generated by a buy-and-hold strategy equal to the number of trades times
the transactions costs. In fact according to Taylor and Allen (1992) and
Brock, Lakonishok and LeBaron (1992) chartist or technical techniques
are widely employed in asset markets as either a basis for published
technical commentary or for direct use. The term technical analysis or
chartism is given as a generic title for any trading rule based on the past
history of prices or returns. Essentially more or less sophisticated rules
are employed to extrapolate past changes in asset prices or returns. One
common example is to employ two moving averages of past returns one
based on a short horizon, say 1 to 10 days, and the other on a long moving
average, say 150 to 500 days. When the short moving average rises above
(or falls below) the long moving average this is a signal to buy (or sell).
A variant of this procedure is to modify the rule by introduction of a
band around the moving average to eliminate ‘whiplash’ signals when
the two moving averages are close.

There is a plethora of empirical work that has investigated the efficacy
of technical analysis — e.g. Alexander (1961); Fama and Blume (1966);
Taylor and Allen (1992); Brock, Lakonishok and LeBaron (1992); Neely,
Weller and Dittmar (1997); Sullivan, Timmermann and White (1999).

Whilst many rules developed by chartists have been reported to gen-
erate abnormal returns, and some theoretical analysis — e.g. Brown
and Jennings (1989); Blume, Easley and O’Hara (1994) — demonstrates
that technical analysis can have value particularly for small less widely-
followed assets, the empirical results of Sullivan, Timmermann and White
(1999) appear to be of importance in the interpretation of chartism. Fol-
lowing a similar methodolgy to the one outlined above they construct
7846 parameterizations of trading rules which are applied to the Dow
Jones Industrial Average over the full period from 1897 t01986 as well
as four subperiods. The period 1987-1996 is employed to evaluate the
rules on a hold-out sample. Their idea is to develop a test statistic
which evaluates the performance of a chartist rule relative to the full set
of models that gave rise to the rule, so that the effect of data-snooping
is explicitly allowed for. One important conclusion is that even though
a particular trading rule is capable of producing superior performance
of almost 10% during the sample period, which is significant at 4% level
when considered in isolation, the fact that the trading rule is drawn from
a wide universe of rules means that its effective data-snooping-adjusted
probability value is 0.9, i.e. totally insignificant. They also find that
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the best-performing trading rule in sample is totally insignificant out of
sample even at conventional statistical levels. Clearly chartist rules may
exist which generate abnormal returns; however the analysis of Sullivan,
Timmermann and White (1999) demonstrates that great care has to be
taken in their interpretation.

Another issue concerning chartists or technical rules is that they can
be interpreted as special cases of univariate time series of a linear or
nonlinear form (Time-Series Annex). If there is predictability in past re-
turns it would appear that employment of an explicit univariate model
would in general dominate. Studies such as Diebold and Nason (1990),
Lane, Peel and Raeburn (1996) are suggestive that nonlinear univariate
models for modelling the conditional mean of a series provide improve-
ment over linear models but do not appear to forecast better than linear
models, with neither of them generating abnormal returns (though see
Granger and Pesaran, 1999).The results of Hsieh (1991) who found that
stock returns exhibit nonlinear structure but that this is parsimoniously
captured by a model linear in mean but nonlinear in variance (Time-
Series Annex) is probably the model that is currently thought of as
most applicable to asset prices or returns. Clearly chartist methods may
conceivably deal more parsimoniously with nonstationarities or regime
changes than explicit nonlinear models though it is not altogether clear
why this should be the case.

Overall it would appear that the market efficiency hypothesis has not
as yet been invalidated at the weak-form level.

Semi-Strong Market Efficiency

Numerous empirical tests of semi-strong efficiency exist. Some of the
work reporting anomalies would appear to be subject to the data-snoop-
ing caveat. Others are harder to explain. In the latter context we men-
tion the empirical work that demonstrates that monthly or quarterly
stock returns are predictable (e.g. Campbell, 1987; Fama and French,
1989; Pesaran and Timmermann, 1994, 1995, 2000). Consideration of
the loglinear form of the present value model illustrates that if expec-
tations of future dividend change are not too noisy then stock returns
may have predictability in that variables that help predict future returns
may exist. This would not invalidate market efficiency. The question is
whether the predictability has economic value in the sense of generating
abnormal returns. From this perspective standard measures of forecast-
ing accuracy have modest information content, since they do not allow
for transactions costs or map into the nature of the profit decision. For
example a forecast that the market would rise by 12% when it rises by
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5% is inferior from the perspective of a squared error measure of forecast
accuracy to a forecast of 0%. Clearly a decision rule of the buy-sell type
would value the forecast differently (see e.g. Pesaran, 1992; Granger and
Pesaran, 1999). It is not clear as yet whether the predictability in asset
returns generates abnormal returns particularly when the potential for
changing risk is allowed for.

Strong-Form Market Efficiency

Insider trading in the major asset markets is subject to legal restrictions
in a number of countries and has been illegal for a number of years. For
instance in the US the Securities and Exchange Act of 1934 prohibits
agents from trading securities while in possession of material inside infor-
mation. Insiders are defined to include not only corporate insiders but
also anyone who obtains material, non-public information from a cor-
porate insider, or from the issuer, or who steals such information from
another source. In subsequent years further acts were passed and in 1988
insider trading sanctions were further increased so that infringement can
result in fines of up to one million dollars or five to ten years in jail. In
the UK insider trading is a criminal offense and can result in up to two
years in jail. As a consequence of this, indirect methods have to be em-
ployed to ascertain whether insiders can make abnormal returns on the
basis of their private information. That insider trading does take place
is prima facie supported by studies such as Keown and Pinkerton(1981)
who found that on average 40-50% of the price gain experienced by a
target firm’s stock occurs before the actual takeover announcement.

Insiders who obey the law are in a number of countries, such as the
US and UK, required to notify the stock exchanges of their ‘routine
trades’ in the shares of their companies. This information is published
reasonably quickly. A number of researchers have investigated whether
this legal trading by corporate insiders can predict future stock market
returns — e.g. Finnerty (1986), Friederich et al. (2000), Gregory et al.
(1994), Pope et al. (1990), Seyhun (1986, 1992).These tests are semi-
strong tests, since the information set underpinning the tests is public.
The evidence is suggestive that excess returns can be obtained though
the measurement of normal returns is an issue in some studies.

Jeng et al. (1999) examine the returns to corporate insiders them-
selves (based on legal trades) using a comprehensive sample of reported
insider transactions from 1975 t01996. Their carefully-conducted study
provides evidence of significant abnormal returns.

Meulbroek (1992) investigates the returns to illegal trades by insiders.
Her sample consisted of individuals charged with insider trading during
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1980-1989. Her data base included information on the charges brought,
penalties incurred, profits earned, number of securities traded, type and
source of the inside information. Among the defendants who traded, the
median defendant transacted in one security and reaped $17,628 in profit
per security. By analysing security prices on the days insiders traded
and did not prior to public announcements Meulbroeck could investigate
the impact of insiders on stock price movements. She concluded that
insider trading increases stock price accuracy by moving stock prices
significantly. She found that the abnormal price movement on insider
trading days is 40-50% of the subsequent price reaction to the public
announcement of the inside information. It would appear therefore from
the studies conducted so far that strong-form efficiency is not empirically
supported.

The arguments for and against the legality of insider trading are
discussed in e.g. Ausubel (1990), Benabou and Laroque (1992), Leland
(1992), Khanna, Slezak, and Bradley (1994), Tighe and Michener (1994),

We now consider in more detail some tests for semi-strong market
efficiency.

Variance Bounds Tests

An important test of the efficiency of present value models of asset prices
was originally developed by LeRoy and Porter (1981) and Shiller (1979,
1981). This exploits the property of rational expectations that the vari-
ance of the outcome is greater than the variance of the rational expec-
tation forecast.

For a variable Y;

var(Y:) = var(E:Yiy;) + var(v) (141)

where v; is the forecast error. This follows since rational expectations
implies that the covariance between the forecast and the forecast error
is zero.

In models of asset prices rational expectations implies that the actual
variance of an asset price, P, which is a weighted average of future
expectations of fundamentals should be less than the variance of the
asset price computed on the basis of the actual stochastic process of the
fundamentals.

For simplicity we consider the model in level rather than log level
form. The asset price has the value, as we have seen in e.g. (33), of:
i Dyt
~ (1+R)

P, =E, (142)
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where Dy, are the fundamental returns and 1 + R is the constant dis-
count rate.

Assuming rational expectations we can decompose the present value
relationship into two components one of which is the perfect foresight
path and the other the sequence of rational expectations prediction er-
rors:

N Dy o Ugpi
! ;(Hmz ;(HRy (143)

where the u.y,; are the forecast errors. Consequently

Pt*:Pt‘i‘Ut (144)
where
= Dy o~ Upg
Pt*: TandthZT
—~ (1+R) —~ (1+R)
From (144)
var(P;") = var(P;) + var(v) (145)

Hence plainly var P, <var P;.

The striking finding of the early literature was that stock prices ap-
pear to move too much to be consistent with subsequent changes in
actual fundamentals. For example Shiller (1981, b) employing annual
data on price and dividends from 1871 t01979 for the US stock market,
so that the actual dividend stream is employed up to 1979 plus a proxy
for 1980 to infinity (typically the actual last value of the asset price)
to compute the variance in 1871, found that the actual asset price was
some five times higher than the perfect foresight asset price. Leroy and
Porter (1981) obtained similar results employing measures of earnings
as fundamentals.

Two statistical problems with this analysis were pointed out by Flavin
(1983), Kleidon (1986) and Marsh and Merton (1986). Computation of
the sample variances in (144) involves use of the sample mean. In small
samples Flavin and Kleidon demonstrate that use of the sample rather
than population mean leads to a bias towards rejecting efficiency.

Marsh and Merton demonstrate that the variance bounds tests pro-
posed by Shiller are not appropriate if the process generating the funda-
mentals are non stationary.

Mankiw, Romer and Shapiro (1985) develop a variance bounds test
which is robust to these two points. Consider a naive forecast of the
asset price, P}

oo

Dy
2 Ty
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where E}" is the naive expectation of future fundamentals (say a constant
growth of dividends model).
We can write

P =F'=(F - P)+ (P - F") (147)

Taking the square of the left- and right-hand sides of (147) and taking
unconditional expectations of ¢ information

B(P; = P")? = E(P{ = P)* + BE(P, - P/")? (148)

since by rational expectations E(P; — P;)(P; — P;*) = 0 (i.e. the rational
expectations forecast error, the first term in braces, is orthogonal to the
second term)

Equation (141) implies that

E(P; — P")? > E(P; — P,)? (149)
and
E(Pf — PI")* > E(P, — P")? (150)

The first expression states that the perfect foresight path is better
forecast by the actual asset price than the naive forecast; the second
expression states that the perfect foresight path fluctuates more around
the naive path than does the actual price.

On the basis of tests that exploit these bounds Marsh and Merton
also reject efficiency though the violation is smaller than in the original
tests. In defense of the efficiency hypothesis we should note, as pointed
out by various authors (e.g. LeRoy and LaCivita, 1981), that the models
assume a constant discount rate or constant realized returns if the model
is cast in loglinear form (see e.g. Campbell, Lo and Mackinlay, 1997),
and the assumption that agents are risk neutral.

Empirical Tests: The Foreign Exchange Market

The foreign exchange market in particular has been looked at particularly
exhaustively and is clearly of great interest for macroeconomics. We
examine some of the empirical issues in detail in this section since many
of the issues are relevant to other empirical work. A building block
of many analyses is that covered interest arbitrage holds. Since this is
an arbitrage condition, violation of it would be highly damaging to the
efficient markets hypothesis. Numerous empirical studies have examined
the covered condition. It appears that, once appropriate allowance is
made for transactions costs and care is taken to ensure that data in
empirical tests is sampled at the same moment in time, the condition
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is violated very infrequently (see e.g. Taylor, 1987, 1989). From the
uncovered and covered arbitrage conditions we obtain that the logarithm
of the forward exchange rate is equal to the market expectation of the
logarithm of the future spot rate defined by the maturity date of the
interest rate. In the case of a one period horizon we obtain

F! = ESi (151)

Under the assumption of rational expectations we can rewrite (151)
as

Siv1 = Ff +upq (152)

where u;11 is the rational expectations forecast error so that w;y; =
St+1 — EiSita.

Since Si+1, and F} are observable, early tests of the rationality of F}
were conducted by estimating the relationship

Sty1 = o + OélFtt + €141 (153)

and testing whether (/)\40: 0, 31: 1 and the error term exhibited serial
correlation.

These tests were supportive in general of the efficiency of the forward
rate as a predictor. However it was realized subsequently that because
the spot and forward rate appear to be nonstationary I(1) processes
(Time-Series Annex), a coefficient of unity obtained in estimates of ay
would be a weak test, even if appropriate standard errors were employed,
since non-rational predictors which shared a common trend would exhibit
this property.

Fama (1984) reported regression estimates for numerous currencies
in the post-war floating period of the form

Sep1— St =70 + 11 (Ff — S) + €141 (154)

Comparison of (152) and (154) shows that if the estimates of ~,and
7o are not significantly different from one and zero respectively then the
forward rate is an efficient predictor.

In fact Fama obtained the striking result that the estimates of v, were
negative and significantly different from unity (or zero). Qualitatively
the same results have been obtained for numerous different data sets and
time periods.

For example using monthly data from 1978.01 to 1990.07 McCal-
lum(1994) reports the following results for the Dollar/Pound

Sii1 = —0.0137 + 0.977F, &’ =0.96 (155)
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Spp1 — Sy = —0.0078 — 4.7403(Ff — S;) R = 0.111 (156)

Whilst employing weekly data for the Dollar/Pound between Decem-
ber10th 1921-May 20th1925 we obtain

Spis = 0.121 +0.920F, R = 0.86 (157)

Sppa — Sy = 0.0056 — 3.3166(Ff — S;) R = 0.043 (158)

The coefficients on the forward premium are significantly different
from unity in these regressions and also significantly less than zero. The
negative coefficient implies that not only is the forward rate an ineffi-
cient predictor, it is also inferior to the spot rate as a predictor of the
future spot rate. These results appear to imply that the foreign exchange
market is inefficient. Whilst this may be the case, and directly observed
survey data of exchange rate expectations support such an interpretation
since they typically exhibit bias and inefficiency (see e.g. Frankel and
Froot, 1987, and Froot and Frankel, 1989) a number of possible resolu-
tions of this apparent anomaly have been suggested which are consistent
with market efficiency. We might also note in passing that if the out-
come was due to inefficient expectations it poses a major problem for
economic analysis given the systematic nature of the bias of the forward
premium over 70 or so years.

The first explanation of the anomalous finding was set out by Fama
(1984): the existence of a variable risk premium.

A time-varying risk premium

If we relax the assumption that investors are risk averse then agents
will require a risk premium for undertaking the uncovered position. A
variety of alternative theoretical derivations of the risk premium have
been proposed (see e.g. Bekaert, 1996; Hansen and Hodrick, (1983),
Hodrick, 1989; Sibert, 1989). In what follows we use the Consumption
CAPM model.

The ex-post nominal return, (1 + Rf), to an uncovered domestic
transaction, is

(1 + R{)st—i-l

1+ R = -
t

(159)
where Rtf is the risk-free nominal foreign interest rate and s; is the ex-
change rate measured as domestic currency per unit of foreign currency.
Covered interest arbitrage for the risk-free nominal domestic interest
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rate, (1 + R;) is given by

(1+ R{)ft
St

14 Ry = (160)

where f; is the forward exchange rate in levels. (Note that (68) is an
approximation to (160) where log(1 + Rf) ~ R/, and S = In s)

Substitution out of the foreign interest rate from the covered condi-
tion and substitution in (159) gives

(1 + Rt)8t+1
ft

~The real ex-post domestic return from an uncovered speculation (1+
R)) is given by

1+ Ry = (161)

(1+ R¢)si1 Py _ (1+ Ry)siy15:P;
ftPtJrl StftPt+1

where P is the price level. The real ez-post domestic return from the
risk-free nominal bond (1 4+ R;) is

1+R, = (162)

- 1 P,
1+ R, = LEEID (163)
Py
From the consumption CAPM
ESQA+ R (c1) _ BB+ R)u'(cre) (164)

u'(ct) u'(cr)

Assuming conditional log normality and the form of utility function
in (21) we can employ (164) and (162) to obtain

S
EtSt+1 = Ft — 0.5V3I(10g ;—+1) + COV([IOg St+1/8t] lOg R&-l—l/Pt) +
t

bcov([log s¢r1/s¢)logcry1/ct)  (165)

(note again: F' =log f, S =logs).

The risk premium reflects the covariation between changes in the
logarithm of the exchange rate and the logarithm of changes in con-
sumption. It is interesting to note that if 6 = 0, so that the consumer is
risk neutral there are still terms driving a wedge between the expected
future spot rate and the forward rate. These terms occur by virtue of
what is known as Jensen’s inequality.

If

Jt = Etsi (166)
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where we measure say in pounds to dollars we also require measuring in
dollars to pounds that.

1 1

—=FE

ft St4+1
However by Jensen’s inequality

E <L> > 1 (168)

St41 Eysi

(167)

We cannot simultaneously have (166) and (167) holding which would
appear to imply that one party can make expected nominal profits,
known as Siegel’s (1972) paradox. The resolution is that traders are
interested in expected real profits. Given the assumption of lognormal
distributions (165) shows the appropriate condition. The terms resulting
from Jensen’s inequality are generally presumed to be small but Sibert
(1989) shows that this assumption may be inappropriate.

Addition of a risk premium to the uncovered arbitrage condition
implies, in conjunction with the covered condition which remains un-
changed (it is riskless), that

F,=ESi+1+p: (169)

where p; is the ‘risk premium’ (inclusive of all the terms).
Subtracting the spot rate from both sides of (169) we obtain that

Fy — S = EtSi41 — St +pr (170)
Now consider the regressions
Fy — Sty1 = a1 + 51 (F — St) + €141 (171)
and
Sir1 — St = as + B9(Fy — Sp) + €211 (172)

where the o and [ are constants and the € are the error terms.
The least squares estimates of 3, and [, are given by

COV(Ft — St+1,Ft — St)

= var(Fy — Sy) -
o2 (p) + cov(ps, ExSey1 — St) (173)
02(p) + 2cov(py, EySiy1 — St) + 02(EpSiy1 — St)
and
cov(Sip1 — S, Fy = S)
By = o

var(Fy — St)
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0'2(EtSt+1 — St) + COV(pt, EtSt+1 - St)
Uz(p) + 2COV(pt, EtSt+1 — St) + UQ(EtSt+1 — St)

(recall in the least squares regression ¥ = a + X, the estimate of

0= %) and that under rational expectations cov (e 1, any variable

at t) = 0. Note also that S;41 — Sy = ErSip1 — St + €141, where €41 is
the rational expectations forecast error.

We note the regressions are mirror images of each other with the
property that 6, + 065 =1, a1 +as =0 and €141 + €2¢41 = 0.

We note from the numerator of (174) that if the estimate of 3, is
negative this is consistent with a time-varying risk premium if the covari-
ation between expected changes in the spot rate and the risk premium is
negative and greater than the variance of expected changes in the spot
rate.

Because (3, is positive this implies that the variance of the risk pre-
mium is greater than the covariation between the expected change in
the spot rate and the risk premium. Together these two conditions also
imply that the risk premium must have a variance greater than the vari-
ance of expected changes in the spot rate. Hodrick and Srivatava (1986)
showed how a negative covariation between expected changes in the spot
rate and the risk premium could be obtained in a properly formulated
theoretical model. Consequently the negative coefficient obtained in the
regressions of changes in spot on the forward premium could be consis-
tent with rational expectations and a time varying risk premium. Un-
fortunately data which would allow direct proxying of the risk premium
are not available at the frequencies required. Time series methods based
on modelling the risk premium as a function of the variance of the spot
rate or forecast errors have not provided much direct support for a vari-
able risk premium, though the models of the risk premia are possibly
poor approximations — see e.g. Baillie and Bollerslev (1990) and Do-
mowitz and Hakkio (1985), Bollerslev and Hodrick (1996) Engel (1996).
In addition the magnitude of the variance of the risk premia implied by
the estimates of (3, are regarded by some as perhaps implausibly high
(though see Pagan, 1988). For example an estimate of 35 of —4 implies

that var(p;) > 5var(F;—S;) (note B, = -4 =1— (COV(PtJi;f(t;tl:git))JrUQ(pt)

(174)

is a different way of writing the estimate of 3,).
A second potential explanation of the empirical findings is called the
‘peso problem’, to which we now turn.

Peso Problems

The expression ‘peso problem’ was probably first employed by Milton
Friedman in his analysis of the behaviour of the Mexican currency, the
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peso, in the early 1970s. Although the Mexican exchange rate was fixed
between April 1954 and August 1976 at 0.08 dollars per peso, Mexican
interest rates were substantially above US interest rates. This finding
presented an apparent puzzle, since rational expectations of a continuing
fixed exchange rate regime would, given negligible risk premia, imply via
uncovered interest arbitrage near equality of Mexican and US interest
rates of similar type. Friedman rationalized the differential in terms of
a market expectation of a devaluation of the peso. In fact in August
1976 these expectations were subsequently realized when the peso was
allowed to float and fell some 46% in value. The peso problem thus refers
to a situation where rational agents anticipate the possibility of future
changes in the data-generating mechanism of economic variables.

To illustrate the nature of the peso problem suppose there are two
possible economic regimes in which the variable y; follows the process

Yyt = Y1 + O0ys—1 + ug in regime 1 (175)
or
Yt = Ty + Uz in Tegime 2 (176)

where 7J;, 7, and 0 are constants and u; is a random variable which is
assumed to be the same, for simplicity, in each regime.

Consider the rational expectation of y;y1 formed on the basis of the
information set Q available at time ¢, E(y41 | ). We assume that
rational agents do not know which regime will prevail in the next period;
rather they have probabilities ¢; that regime 1 will occur and 1 — g; that
regime 2 will occur.

The rational expectation of y.11 is then given by

E@ir1 | %) = q(¥y +0y:) + (1 — q0)75 (177)

The peso problem in its starkest form can be illustrated by assum-
ing that only one of the regimes is ever observed in a sample of data.
Consider the case where only regime 1 occurs. The rational expectations
forecast error for this case is given by

U1+ 0y + w1 — E(yeer | Q) = w1 + (1 — @) [g; — To) + (1 — q1)0ys
(178)

We observe from (178) that the ex-post forecast error in this case will
exhibit bias and exhibit correlation with variables in the information set
when expectations are formed (y;). In fact if # = 1, in our example the
forecast error will be non-stationary, a possibility pointed out by Evans
and Lewis (1993, 1994).
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It is also interesting to note what happens when a standard orthogo-
nality or efficiency test for rational expections is run on data generated
by this outcome, assuming ¢; is constant: let the researcher estimate the
relationship

Yep1 — E(yeg1 | Q) = a+ B(E(yes1 | Q) — ye) + €141 (179)

where a and 3 are constants and e;4; is the error term.

The least squares estimate of 3 =cov(Y, X)/var(X) where Y is the
dependent variable and X the independent) is given by

5_ 00 -q
(1—0q)

Consequently for 8 > 0 the regression estimate of (3, which is nega-
tive, would imply that the rational expectation of y,11 was an inferior
predictor to the current level of y;.

Non-occurrence of a regime (event) in a particular sample provides
the extreme example of the peso problem. Such possiblities could occur
when for instance there is a small probability of a change in regime.
Such cases would not be amenable to differentiating empirically between
rational expectations and an alternative unless the probability ¢ and the
alternative regimes could be described.

Evans (1996) has set out a general method of analysis of the peso
problem some of which we now set out. We can define the rational
expectations forecast error, e;11, as

err1 = Yer1 — By | ) (181)

To examine how the properties of the forecast error are affected by
the presence of discrete changes in regime Evans supposes that 41
can switch between two processes which are indicated by changes in a
discrete-valued variable, Z; = {0, 1}, so that Z; only takes the value
zero or unity. Let y;11(2) denote realized returns in regime Z; 11 = z.
The peso problem is to consider the behaviour of forecast errors, y;41 —
E(y1+1 | Q). Evans does this by decomposing realized returns into the
conditionally expected return in regime z, which is denoted F(y;11(2) |
Q) and a residual u;; (which for simplicity is assumed to be the same
in both regimes).

The decomposition has the following form:

Yir1 = EWer1(0) | Q) + AE(yerr | Q) Zeg1 +uea (182)

(180)

where

AE(Yis1 | Q) = E(yer1(1) | Q) — E(ye+1(0) [ ) (183)
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Substitution of (183) into (182) and setting Z;11 as either one or zero
informs us, as pointed out by Evans, that it will always be possible to
decompose y;+1 in this way regardless of the process ;11 follows in either
regime or the precise specification of the information set €2;. Given the
assumption of rational expectations E(ui+1 | €4) = 0, so that the error
term wsy1 has the conventional rational expectations properties, Evans
defines this error as the within-regime forecast error, since it represents
the error when the ¢ + 1 regime is known.

When agents are unaware of the regime in ¢ 4 1 their forecast errors
will differ from the within-regime errors. Taking expectations of both
sides of (182) on the basis of €2; information, we have from the properties
of rational expectations that

E(yir1 | Q) = E(ye41(0) [ ) + AE(y11 | Q) E(Zigr | ) (184)

where we note that the right-hand side now contains the expected regime
int+1.

Subtraction of (184) from (182) and substitution in (181) gives the
ex-post forecast error as

€rr1 = Upg1 + AE(ytH | Qt)[Zt-H - E(Zt+1 ‘ Qt)] (185)

We observe from (185) that when the regime at ¢ + 1 is known,
so that Ziy1 — E(Zi41 | Q) = 0, the forecast error is the standard
within-regime error so that there is no peso problem. When the future
regime is unknown the second term in (185) adds a component to the
within-regime error (given that the within-regime forecasts differ so that
AE(yi41 | ) #0).

Evans illustrates this point more clearly by supposing that in period
t + 1 regime 1 occurs. From (185) with Z;; = 1 we obtain that

ery1(1) = w1 + AE(yer1 | Q)1 — E(Ziga | )] (186)

or
er41(1) = w1 + AE(yeqr [ ) Pr{(Zeg1 = 0| 24)} (187)

where Pr denotes probability.

When the probability of regime 0 is non-zero the rational expectation
error contains an additional component which is the difference between
the within-regime forecasts multiplied by the probability that regime
0 occurs. As we illustrated with our example above when the within-
regime forecasts differ this can generate an ex-post rational errors which
may have a non-zero mean, so that they appear to be biased or serially
correlated, and so inefficient. It is also apparent from (185) that the
extent to which this issue will be important in empirical evaluations of
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forecasts will be dependent upon the frequency of regime shifts in the
data sample. In the extreme case when only one regime occurs the errors
will match those in (186). When there are a number of regime changes
the forecast error will be a weighted average of e;41(1) and e;+1(0) (de-
fined anologously to (186)).The effect in this case on the properties of
the forecast error will depend on the sample properties of the forecast
error for regimes Zy11 — E(Zi41 | ). When the number of regime
changes in the sample is representative of the underlying distribution
of regime changes, from which the rational expectations of agents are
generated, then the forecast error for regimes will exhibit a zero mean
and the forecast errors will exhibit the standard rational expectations
errors.

An interesting extension of the peso issue considered by Evans and
referred to by Kaminsky (1993) as the generalised peso problem is when
agents do not know which current regime they are in (for instance
the central bank’s preferences). Evans illustrates some implications
by assuming that the degree of uncertainty of the regime is given by
Pr(Z; | ). When the regime is known and there is no uncertainty
Zy = z and Pr(Z; | ) = 1. When Pr(Z; | ;) # 1 Evans discusses some
implications in the following manner. First we employ the identity

PI‘(Zt+1 = 0) = PI‘(Zt+1 =0 | Zt = 1) — Pr(Zt+1 =0 | Zt = 1)
+ PI'(Zt_;,_l = O) (188)

where for simplicity we have dropped the notation for the information
set ;. (We read e.g. the second term of (188), Pr(Z;41 =0| Z; = 1), as
follows: the probability of Z;11 = 0 given Z; = 1, all conditional on the
information set €2;).

We substitute (188) into (187) to obtain

ery1(1) = upp1 + AE(Yiy1) Pr(Zi41 =01 Z, = 1) —
Pr(Zpi1 = 0| Z = 1) + Pr(Zips = 0)]  (189)
or
et+1(1) = utr1 + AE(Ye 1 {Pr(Zes1 =0 Zp = 1} —
AE(yp1)[Pr(Ziy1 =0 Zy = 1) = Pr(Zy41 = 0)] (190)
Now
Pr(Ziss = 0| Zi = 1) — Pr(Zpss = 0) (191)
the last term in (190), is equal to
[Pr(Zi11 =02, =1) = Pr(Z141 =01 Z, = 0)]Pr(Z, =0)  (192)
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since equating (191) and (192) and rearranging gives the definitional
statement

Pr(Zi41=0)=Pr(Z;1=0|Z; =1)[1 = Pr(Z; = 0)] +
Pr(Zyp1=0|Zy = 0)[Pr(Z, = 0)] (193)

(note 1 —Pr(Z; =0) = Pr(Z; = 1)).
Consequently the last term in (190) can be rewritten as

—AE(yt+1)[Pr(Zt+1 =0 | Zt = 1) — Pr(Zt+1 =0 | Zt = O)] PI'(Zt = 0)
(194)

Recognizing that the first two terms on the right-hand side of (190)
are the same as those in (187) we see that uncertainty about the current
regime manifests itself in an additional term in the forecast error given
by (194). We observe that this term will only be zero if the probability
of regime 0 at time ¢ + 1 is independent of the current regime or of
course that within-regime forecasts are equal. In addition we observe
that changes in Pr(Z; = 0) (perhaps due to learning about the regime)
will contribute to the structure of the error term.

Evans (1996) documents a number of other interesting implications
of the peso problem. In the context of asset prices, where current values
depend on expected values of fundamentals into the indefinite future,
he demonstrates how news about future fundamentals can influence cur-
rent prices through the normal channel of changed forecasts of future
fundamentals as well as the additional channels of the difference in fun-
damentals in the different regimes as well as the dynamics of regime
switching. In the context of empirical work he demonstrates how peso
problems can contribute to the explanation of some of the puzzles found
in asset markets, such as the bias of the forward premium. Bekaert,
Hodrick and Marshall (2001) show how peso problems can contribute to
an explanation of anomalies in the term structure of interest rate (see
below).

The peso problem is that sample statistics are not representative of
the population so that statistical inferences are potentially misleading.
It is clearly of considerable importance in evaluating models of expecta-
tions.

Statistical Rationale

An alternative statistical rationale for the forward premium bias is sug-
gested by Baillie and Bollerslev (1997). An empirical regularity in the
exchange market is that the statistical properties of changes in the spot
rate and the forward premium are markedly different. In monthly data
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the variance of changes in the spot rate is typically some 100 or so times
greater than the variance of the forward premium. In addition whilst
changes in the spot rate typically exhibit little evidence of serial corre-
lation and can often be well approximated by martingales the forward
premium typically displays very persistent slowly decaying autocorrela-
tions which may be described as a fractional process — see e.g. Baillie and
Bollerslev (1994), Byers and Peel (1996), also the Time-Series Annex).
The statistical properties of changes in the spot rate and the forward
premium imply that estimates of (5 in small samples may be fragile.
Baillie and Bollerslev show this is the case. They report estimates of (3,
in the Fama regression obtained from a rolling sample of data. Employ-
ing monthly data for the DM/dollar they consider 208 five-year rolling
regression estimates for [, obtained by beginning in March 1973 and
using a total of sixty observations through to February 1978. Then the
next estimate was obtained by using data from April 1973 through to
March 1978, until the final estimate was based on data from December
1990 through to November 1995. The estimates of G5 display marked
instability varying between —13 and 3.52. These findings suggest that
for many sample sizes encountered in practice, the estimate of 3, is likely
to be uninformative about the true value of 3,.

They provide further support for this view by simulating data from
a known structure which is calibrated to produce the stylized statistical
properties exhibited by the spot and forward premiums. The expecta-
tion embodied in the forward premium is rational by construction. Their
simulated models are found to generate results which are similar to those
reported in the literature. In particular, the forward premium exhibits
persistent autocorrelation and the estimates of 3, are widely dispersed
between negative and positive numbers.These empirical findings are of
some interest since the statistical properties exhibited by the dependent
and independent variables in the Fama regression are qualitatively sim-
ilar to those exhibited in other tests of market efficiency such as bond
rates (see below).

McCallum (1994) illustrates another important point that needs to be
given consideration when testing market efficiency relationships. This is
whether the relationship is invariant to government policy. To illustrate,
McCallum assumes that the monetary authorities manage interest rates
so as to smooth their movements while also resisting changes in exchange
rates.

Defining oy = R; — RI" he considers the policy rule

Ty = )\(St — St—l) + o1 + ey (195)

where A\, o are constants and e; is a random error.
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Uncovered arbitrage is given by
Ty = EtSt+1 — St =+ v (196)

McCallum interprets v; as measurement error though it could be
interpreted as a risk premium. He assumes that

Ve = pup_q + Uy (197)

where p is a constant and u; is a random error. Assuming a solution for
changes in the spot rate of the form

St — St,1 = Al‘tfl + But + Cet (198)
and equating coefficients we obtain the solution as

-0 u e
Sp — Sp—1 = (,0)\ )It_lJr()\Trt—p)Xt

(199)

(note that a1 = Ry_1 — RLl = F;_1 — S¢—1). The solution for z; can
also be obtained as

)\’U,t

E— (200)

Ty = pTe—1 +
The important point to note is that the coefficient on z;_1 (= Fy—1 —
Si—1 via the covered arbitrage condition) in (199) contains the policy
parameters A and o. If o is close to unity and greater than p and X is
positive, then the coefficient can be negative. In addition, the forward
premium will exhibit persistent serial correlation for p close to unity and
if the variance of w; is very small relative to the variance of e; then
changes in the spot rate will be closely approximated by a white noise
error process even though the true process is a persistent ARMA(1, 1)
process.

This concludes our discussion of tests of market efficiency in the ex-
change market. It has emphasised the considerable difficulties in deter-
mining from ex-post regression whether this market is efficient.

We next consider, more briefly, the implications of market efficiency
for the behaviour of interest rates.

LONG-RUN INTEREST RATES UNDER MARKET
EFFICIENCY

There are a great variety of bonds. Bonds are issued by private compa-
nies, local authorities and by the government. Naturally the probability
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of default can vary across bonds with different issuers. But government
bonds are normally regarded by investors as free of default risk and it
is the pricing of these types of bonds in an efficient market that we
will consider here. Government bonds can be broadly categorized as
being of two main types. The first type are bonds which pay a regular
coupon, usually semi-annual, which is a fixed fraction of the face value
of the bond up to the maturity date when the face value is also repaid.
The other type are zero-coupon bonds, also called discount bonds which
make one payment at the maturity date of the bond. Bonds are offered
with a great variety of maturity dates, from short up to undated (con-
sols in the UK). Bonds paying coupons can be interpreted as packages
of zero-coupon bonds with one corresponding to each coupon payment
and one corresponding to the repayment of the principal and coupon at
the maturity date. For an individual trader, long-run bonds are substi-
tutable for short-run bonds, since it is possible for him to hold a series
of short bonds rather than a long bond over the same holding period, or
conversely to hold a long bond for a short period and then sell it rather
than hold a short bond to maturity.

More formally, assume initially that traders are completely certain of
the future. Initially we consider pure discount bonds so that the return is
simply the discount from par at which the bond is sold at the beginning
of the period relative to the redeemed par price at the end of the period.

The price, P, at time ¢ of a bond which makes a payment of £1 at
time t + n is given by

1

Py=—
FT (14 Ry )

(201)
where R,; is the bond’s yield to maturity.

In a world of certainty the pure expectations hypothesis assumes that
the the following condition must hold:

(14+Ry)" =1+ Ri)(1 4+ Riyy1)(1 + Rigg2) - .- (1 + Riggn—1) (202)

The left hand side of (202) is simply the rate of return on holding an
n-period bond until maturity. The right side of (202) is the rate of return
implied by holding a one-period bond for one period, then reinvesting
the proceeds (principal plus interest) in a one-period bond for the next
period and so on.

By taking logarithms and recalling that for small values of the frac-
tion Z, In(1 + Z) can be approximated by Z, we can rewrite (202) as:

1
Ry = 5(R1t + Rity1+ Ritsa+ ...+ Rityn—1) (203)
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In other words (203) informs us that long-run interest rates are simply
averages of future interest rates over the time period to maturity. It tells
us, for instance, that if short-run interest rates remain constant for the
indefinite future, then long rates will be equal to short rates. Conversely,
if future short rates are expected to fall, the current long rate will be
below the short rate. The relationship is known as the expectations
theory of the term structure of interest rates.

When we relax the assumption of perfect knowledge of the future
and recognize that traders can observe the current long rate R,,; and the
current one-period short rate Rj¢, it follows if traders are risk neutral
that:

1
Ry = g[Ru + EiRit41 + EtRizo + ... ERityn—1] (204)

If traders are risk averse, then we must add a risk premium to the
right-hand side of (204) but this does not affect the argument, provided
it is constant.

If we consider a bond with a two-period maturity date then

1
Ry = §[th + EtRit41) (205)

We can rewrite (205) as
EyRity1 — Rip = 2(Rot — Ruy) (206)
or assuming rational expectations that
Ripy1 — Rip = 2(Rat — Rup) + v (207)

where v;11is the expectations forecast error. Accordingly we observe
that the expected change in yield on a one-period bond is related to
twice the difference between the yield on a two-period bond and the
yield on a one-period bond and that the actual change differs from this
term by an expectational error. The expectations hypothesis implies
testable implications such as this for bonds of different maturities. We
now examine some of these implications further.

We first introduce the concept of the holding-period return, H,;1,
which for simplicity we assume is one-period. This is the return from
purchasing an n-period bond at time ¢ and selling it at time ¢ + 1. At
time ¢ + 1 the bond will become an n — 1 period bond and will be sold
for a price Pp_1¢41 -

From (201)

Pn—1t+1 (1 +Rnt)n

Lt Huerr = P (14 Ry1p1)" (208)
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The expectations hypothesis also implies that
th == Et [Hnt+1] (209)

Equation (209) tells us that the yield on a one-period bond should
equal, ignoring any risk premium, the expected holding-period return
on an n-period bond held for one period. Taking logs of (208) and
approximating as above, and then taking expectations, we can use (209)
to eliminate the expected holding-period yield. Manipulation of the
resultant gives:

B(Ru1i1 — Roy) = oot — 1) (210)
n—1

Equation (210) informs us that when the spread (the difference in
yield between the long-maturity and short-maturity bond) is positive,
changes in yields on long-maturity bonds are expected to increase. Camp-
bell, Lo and Mackinlay (1997) and others have tested (210) by estimating
the equation

(Ryt — Ruy)

Ry 141 — Ry =a+p —

+ & (211)

where ¢; is the forecast error.

The estimate of 5 should not differ from unity when equation (211)
is estimated for discount bonds of different maturity dates. The results
are not supportive of the expectations hypothesis. Estimates of § are
often negative, particularly for bonds of long maturity dates.

A variety of explanations exist for this anomalous finding and they
mimic the explanations for the anomolous empirical finding in the ex-
change market discussed above whereby the forward premium is nega-
tively related to future changes in the spot rates. These are time-varying
risk premia, peso problems, goverment policy rules and low statistical
power of the regressions.

We can also write (204) in the form

1
Ryt — Ry = - [Rit+ (EiRit41 — Rig+ Rit) + (EyRipy2 — Riy + Ruy) +
oo+ (BtRit4yn—1 — Riy + Riy)| — Ry (212)

or

n
ARypyi 1
R — = _
nt — e = Ey Z m (213)
=1
Equation (213) informs us that the spread is a predictor of future
changes in short run interest rates. This implication can also be empir-
ically tested. One method is to replace the expected terms on the right
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hand side of (213) by their actual values and regress the resultant on the
spread, employing an estimator that corrects for the overlapping expec-
tational errors. The coefficient should not differ from unity. Campbell,
Lo and Mackinlay (1997) report such estimates. Their results suggest
a U-shaped pattern in the estimates for different maturities. For short
maturities, the spread has a positive coefficient which is less than unity
and declines initially, becoming insignificant with the maturity horizon.
At longer horizons a significant positive coefficient is obtained sometimes
greater than unity. It thus appears that the spread has ability to predict
short-run interest rates changes for both relatively short and long hori-
zons but not intermediate horizons. The empirical results can again be
explained by reference to the arguments explaining previous anomalous
findings above.

We now turn to analysis of coupon-paying bonds.

The yield to maturity, or long-run interest rate Y,”, on an n-period
bond is determined by the fact that the price P/* of the bond is the
present value of a coupon (C), assumed paid at the end of each period,
and repayment of the principal (normalized here to unity) at the terminal
date discounted by Y,*. We have that

Y = < + < + ¢ +...+L
1+yr  (1+Y)? (14+Y")? (1 +Yr)"
+ W (214)
Letting u = ﬁ we can multiply (214) by u to obtain
uP = Cu® + Cu® + Cu + ... 4+ Cu™ ™ 4 4! (215)
Subtracting (215) from (214) we obtain
P'(1 —u) = Cu— Cu"™* o™ — oyt (216)

Dividing (216) by 1—u, noting that P;*(1—u) = Cu(1—u™)+u™(1—u),
and % = %, rearranging after substitution back for v we obtain that
t

O, _Yr-C

t Ytn Y;’L(l +Kn)n

It ;" = C, P =1, and conversely. Bonds with this characteristic,

whose price today equals the principal paid at maturity are selling ‘at

par’.

We also notice from (217) that for an undated security or perpetuity,

n = oo and so P, = %, so that the price is the coupon divided by the
very long-term interest rate, Y;.

(217)
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The one-period holding yield, H}*, on a n-period coupon-paying bond
consists of both the yield in the holding period plus the capital gain or
loss. This gives us

PG —-Pr+C

Hp = o

(218)
recalling again that an n-period bond at time ¢ becomes an n — 1 bond
at time ¢ + 1.

We note from (218) that for a perpetuity, n = oo,

(Yiy1 — Y3)

H =Y, -
t t Yo

(219)

Equating the expected holding-period yield from the perpetuity to
the yield on a short-term coupon-paying bond we have that

Yit1 — Y3)

vyli=v — ( 220
t t Yz‘f-‘,—l ( )

If we take a first-order Taylor expansion of the last term on the right-
hand side of (220) around Y we obtain

YY) Y(Yipa —Y)

1
R e = (221)

Rearranging (221) we obtain in expectational form
BiYies — Y = V(Y - Y} (222)

We observe that expected changes in the yield on the perpetuity are
positively related to the spread between the yield on the perpetuity and
the yield on the short maturity bond.

Equation (222) can also be solved forward to obtain the solution for
Y, as

Y =Y,
Y, = —F na - 223
T4y t;(wy)z (223)

so that the perpetuity is a weighted average of expected future short
yields. Clearly (223) is a linear approximation to a nonlinear structural
equation and its ability to approximate will naturally be dependent on
interest rates not being too volatile so that the approximation remains
reasonably accurate

In the more general case of coupon-paying bonds with an n-period
horizon the derivation can proceed in a similar manner. We substitute
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for the price of the bond from (217) into the holding period yield (218).
This gives us the rather messy relation

yrt-c
C Cf _ T+l -
( * Yt111 * Y/ 1(1+Yt’-l§-11)"71 1

tH1
< 4 _Yr-c
=

(In Shiller, 1979, equation (224) is linearized around Y;* = Yﬂ__ll =Y =
C.) This gives the relationship

Hp =

(224)

Y — o~ Yol
Hp =t Tnthl (225)
1- Tn

where v,, = {1 +Y[1-1/(1+Y)"1]71}~!

Equating (225) to a short yield, Y;! (plus any constant risk premium)
we can solve the resulting difference equation for Y,"”, given the terminal
condition that the price of the bond is 1 at ¢t + n, as

Y = 1_7nEtZW Yy + o, (226)
=0

where ¢, is any constant risk or liquidity premium. Equation (226)
informs us that the n-period yield on a coupon-paying bond is a weighted
average of the expected yields on the one-period bond.

Shiller exploits these properties to evaluate empirically whether long-
run bond yields are too volatile to be consistent with rational expecta-
tions and the observed volatility in short rates (a test analogous to the
variance bounds test for stock prices outlined above). His empirical find-
ings are inconsistent with rational expectations. Again the results could
be reconciled by appeal to the sort of issues raised above.

LEARNING AS AN ALTERNATIVE TO RATIONAL
EXPECTATIONS:

The tests we have been examining all assume rational expectations. One
possible cause of failure could therefore be that expectations are not ra-
tional but rather the result of a learning procedure — of which adap-
tive expectations is an approximation, as shown by Benjamin Friedman
(1979).

We observed in the appendix to chapter 2 that if a series followed an
ARIMA(0,1,1) process then an adaptive expectations scheme could in
fact be a representation of the rational expectation. Earlier in this chap-
ter we also found that a regressive expectations scheme could be rational
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in the Dornbusch overshooting model. In general of course these meth-
ods of expectations formation will not have the rational expectations
property. They illustrate however that in any particular model struc-
ture, since the rational expectation solution can be written in terms of
observable variables, there is a ‘mechanistic’ method of expectation for-
mulation which will have the properties of rational expectations for the
particular model structure. In this book we are primarily concerned with
investigating the properties of models when it is assumed that agents’
expectations, or the aggregate of agents’ expectations, have the rational
expectations property. Maintained assumptions of this approach are that
agents know the true model, or act as though they did, and also assume
that other agents also possess this information (see Townsend, 1978). In
this approach econometricians will come across cases of ‘adaptive’ expec-
tations which by chance represent the rational forecasting mechanism.

However there is an important literature that relaxes these assump-
tions and assumes that expectations follow a learning rule,which has
the potential to converge to rational expectations (see e.g. Evans and
Honkapohja, 1999, 2001, and Sargent, 1993). From this perspective the
adaptive or regressive expectations schemes can be interpreted as simple
learning rules which have converged on the rational expectations solu-
tion. A variety of learning rules, in general possibly more intelligent,
have been studied. One such example is least-squares learning whereby
agents employ least-squares regression to estimate the parameters of a
model and employ the resulting model to forecast the variable of interest.
This approach to learning models agents in the same way as economists
who employ econometrics and statistical inference in deciding between
competing models. Employing this approach also highlights another as-
pect of rational expectations that agents in the model are assumed to
possess more information than the outside observer.

One motivation for studying learning rules is to ascertain whether
they converge on rational expectations and how fast this process is.
Answers to such questions may be relevant for some in deciding how
plausible the rational expectations assumption is.

Whilst the implausibility of the assumption that agents know the
true model may be sufficient justification for some for studying the im-
plications of the learning assumption there are other properties of the
rational expectations assumption that have been used to justify such an
approach.

The first of these is the issue of ‘non-uniqueness’ (as set out in chapter
2). When the model exhibits more than one stationary solution methods
that are not part of the formal model structure have to be employed to
determine which solution is chosen by agents. The solution chosen by
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different learning rules has been widely studied. However, as we argued
in chapter 2, ‘non-uniqueness’ should really be seen as the failure of a
stability condition for the ‘forward’ root. The ultimate remedy is to find
a specification which satisfies stability conditions that presumably hold
in the real world.

The second justification is when a model has more than one equilib-
rium solution. For example, take the widely used model of hyperinflation
which has been extensively studied in this context. If we assume a gov-
ernment prints money to finance a constant budget deficit, then

PGy = M, — M,_, (227)

where P, is the price level, G; = G is the constant real deficit, and M,
is the money stock.
Assume a demand function for money of the form

% = f(Epi+1) (228)
where Eip;i1 = Ei(log(Pey1/P:) is the expected rate of inflation:
0%t
T (229)

and real output has been assumed constant.
Assuming money demand is equal to money supplied we can substi-
tute (2) into (1) to obtain

G = f(Epes1) — f(Er_1pe)e P (230)

(since lOgP_iT = pf’P_ﬁT = ePt)

Equation (3) has two equilibrium solutions if G is not too large (where
Eipiy1 = Ey_1pt = pr = D). Intuitively if inflation is zero in equilibrium
the authorities generate no receipts, whilst if inflation is infinite agents
hold no money so receipts are also zero. Consequently the equilibrium
surface G = g(p) exhibits two equilibria for G < Gmax. Assuming ra-
tional expectations the equilibrium exhibiting higher inflation is mathe-
matically stable and the lower one unstable. These rankings are reversed
assuming adaptive expectations. If the view is taken that mathematical
stability is not the appropriate selection criteria in a rational expecta-
tions model then there is no mechanism, which is part of the formal
model structure, to choose between the two equilibria. More generally a
rational expectations models could exhibit multiple stable equilibria.

A third justification is structural change. Say a new government or
a new central banker appears, it is natural to model agents as learning
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about the new regime. How ‘wet’ or ‘dry’ the new governor is and how
the probabilities change as new information accrues seem best analyzed
in a learning framework.

We will now briefly illustrate some examples of learning mechanisms.
Evans and Honkapohja (1999) have divided the approaches into three
groups and we follow their taxonomy.

Eductive approaches

In this literature researchers investigate whether the coordination of ex-
pectations on an rational expectations equilibrium can be attained by
a mental process of reasoning. We illustrate with an example based on
DeCanio(1979).

Suppose the demand and supply in a market are given by

q = a— bp; + wy (231)

g =c+dE_1p; + vy (232)

where p; is the price level, w; and v; are random disturbances and a, b, ¢
and d are constants.
The reduced form for prices in this system assuming demand is equal
to supply is given by
a—c d Wy — Vg

Pt = b gEt—lpt + b

where the definitions of A,B,u; are obvious.

Suppose agents form their expectations initially in an arbitrary man-
ner.The question is whether they can modify their behaviou r in such
a way as to lead them closer to rational expectations, given by HLB.
Suppose the initial, arbitrary expectation of all agents is given by

E)_1pt = pi (234)

From (232) given this expectation the actual evolution of prices will
be given by

=A—BE;,_1p; + uy (233)

pt=A—Bpi1+u (235)

DeCanio assumes that after some passage of time agents realize (rea-
son or deduce) that prices are evolving according to (234) and form the
new expectation

El 1pt =A—Bpi_ (236)
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However this new expectation changes the evolution of the system to
pe=A—B(A—Bpi_1) +u = A— BA+ B’p;_1 + (237)

Agents observing the new evolution of prices in the market agents
revise expectations to

E} 1py=A—BA+ B’p 4 (238)
so that actual prices evolve as

pr=A—B(A—BA+B*p;_1)+u =A—BA+B?*A—B3p,_1 +uy
(239)

Continuing in this manner after n iterations we will have
E' ;p=A—BA+ B?*A—-B3A+ — 4+ AB" + B"p;_, (240)

If |B| < 1, for large n expectations will converge to the rational expec-
tation

A
1+B

since 45 = 1 — B+ B> — B®+ —+ for |B| < 1.

Clearly convergence to the rational expectation is not guaranteed
even in the simple example if | B| > 1. When iterative expectations con-
verge on the rational expectations solution the rational expectation is
said to be iteratively E-stable. The iterative expectations of agents were
assumed to be homogenous in the above example. When convergence
occurs and the iterative expectations of agents are heterogeneous as in
Guesnerie (1992) the rational expectations model is said to be strongly
rational. Evans (1985, 1986) employ the iterative expectations method
in models embodying multiple solutions, Peel and Chappell (1986) in a
model embodying multiple equilibria and Bullard and Mitra (2000) in a
model where agents learn about monetary policy rules.

Etnflpt = (241)

Adaptive Approaches

Early on Benjamin Friedman (1979) argued that agents would learn
from data via regression about the model and the policy regime. This,
he pointed out, would produce expectations formation very similar to
adaptive expectations without necessarily ever leading to rational ex-
pectations. Such statistical learning was subsequently examined to see
whether it would converge on rational expectations. We consider the
least-squares learning mechanism initially analyzed by Bray and Savin
(1986) and Fourgeaud, Gourieroux and Pradel (1986), though we note
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that more complicated estimation procedures such as neural nets and
genetic algorithms have been employed (see Sargent, 1993).

Suppose for simplicity that the reduced form for prices follows the
process

pe=A+BE 1pi+Cz1 +uy (242)
From (241) the rational expectation is given by E;_1p; = %
so that prices evolve as
AB+C
pr=A+ %thl +ur = A+ Gz_1 + uy (243)

Suppose agents believe that prices follow the process given by (242)
but are unaware of the values of the parameters A and G. In the least-
squares approach to learning agents are assumed to run least-squares
regressions of p; on z;_1 and an intercept using previous data on the
variables. Expectations are then generated from the estimated model.
As more data becomes available the model is then reestimated, expec-
tations formed and so on. Researchers have demonstrated that the con-
ditions for convergence of recursive least-squares expectations can be
weaker than those under iterative expectations. (B < 1 in this model as
opposed to |B| < 1 with iterative expectations.)

In the case of least-squares learning where agents perceive the reduced
form as

ye=0x+ e (244)

’
where ( is a vector of coeflicients, x; a vector of explanatory variables
and e; an error, the least-squares estimated coefficients are given by

By = (Z_: 33&";) (X_: -'L'iyz) (245)

It can be demonstrated that the recursive least-squares estimates are
generated as

By =By + R w1 (o1 — By_17e-1) (246)
and
Rt = Rt—l =+ ")/t(ﬂit_lﬂf;_l — Rt—l) (247)

with v, = % and where R, is an estimate of the moment matrix for x;.
-1

For suitable initial conditions R; =t~ 5 z;x;.
i=0
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We note that the term v, = % is known as the ‘gain’. It is important
in determining the speed of convergence to the true parameter. Some
intuition of the least-squares updating formulae can be obtained by con-
sidering the recursive least-squares estimate of the mean Fz; = pu. The

t
least-squares estimate is the sample mean z; = % > 2.
n=1

Subtracting the sample mean at ¢ — 1 from both sides of Z; and
rearranging gives

1
Zt =Zt—1 + E(Zt — Etfl) (248)

t t—1 t—1
since 1z =Y zp, = 2+ ., zp and (t — 1)Z;—1 = > 2, so that ¢(Z; —
n=1 n=1 n=1

t—1
Etfl) =2+ Z Zn — tzt,1
n=1

=z + (t — ]-)Etfl —1Zi 1 =2t — Zt_1-
Adaptive methods of learning have the same general type of structure
which is given by

0; =01+ )\tQ(t, Qt,l, Xt) (249)

where 6; is a vector of parameters, ); is the gain parameter equal to % in
the case of least-squares, () is a function and X; is the vector of variables
in the structural model. We note that adaptive expectations is a special
case of (248) where the gain parameter is constant..

The evolution of X; will depend on ;_1, in the case of a linear system

Xy = A1) Xo—1 + B(0,_1)W, (250)

where W; is a vector of disturbance terms.

Marcet and Sargent (1989a,b), Evans and Honkapohja (1998) derive
stability results for linear (and nonlinear) systems. Sargent (1999) as-
sumes the US authorities used constant-gain least-squares learning about
the Phillips Curve and maximised a social objective function to pick in-
flation; he argues this fits US post-war data, accounting for the ‘great
inflation’ where rational expectations cannot.

Rational Learning

Rational learning has to be interpreted from a perspective that acknowl-
edges the benefits and costs of more accurate forecasts for an agent as
in Feige and Pierce (1976) or Evans and Ramsey (1992), so that ratio-
nal expectations may not be attained unless calculation costs are zero.
However the method most widely employed to model rational learning
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has been to employ Bayes’ rule. Bayes’ rule is the basic property of con-
ditional probability and is a method of updating our belief or probability
of event or hypothesis A given new evidence B. Specifically, our poste-
rior belief P(A/B) is calculated by multiplying our prior belief P(A) by
the likelihood P(B/A) that B will occur if A is true. To see this we can
rearrange the conditional probability formula to get:

P(A/B)P(B) = P(A, B) (251)

where P(A, B) is the joint probability of A and B.
By symmetry we also have

P(B/A)P(A) = P(A, B) (252)
It follows from (250) and (251) that .

P(B/A).P(A)

P(4/B) = =75

(253)
Equation (252) is called Bayes’ rule or Bayes’ theorem. The formulation
carries the implication that beliefs change by learning: agents come to
know of a new fact and form their posterior belief by conditioning their
prior belief on these facts.
An alternative form of Bayes’ rule is given by
P(B/A).P(A)

PAB) = SpBIA) POA) (254)

since P(B) = Y _P(B/A;).P(A;) where A; refers to the event space.

From (252) we observe that the data or new facts B only influence the
posterior inference through the function or probability P(B/A) which is
called the likelihood function.

The ratio of the posterior probability evaluated at the two events Aq
and As is called the posterior odds.

We have

P(A/B) _ PUA)P(B/AY/P(B) _ PUANPB/A) (o
P(42/B) ~ P(4)P(B[43)/P(B) ~ P(4)P(B/A3)

In words, the posterior odds are equal to the prior odds multiplied
by the likelihood ratio.

Bayes’ rule has been widely employed to model learning in the eco-
nomics literature — see e.g. Cyert and DeGroot (1974), Backus and Drif-
fill (1985), Ellison and Valla (2000), Lewis (1998) Sill and Wrase (1999),
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Townsend (1978). Types of problem analyzed employing Bayes’rule in-
clude learning about a new regime. We will give one example which is a
slight modification of Lewis (1988). She demonstrates how beliefs that
a policy process may have switched can induce apparent ex-post biased
forecasts of exchange rates even after the switch has occurred. In addi-
tion, in her model, exchange rates may appear to contain a speculative
bubble component since they will systematically deviate from the levels
implied by observing fundamentals ex-post.

Assume the reduced form for the exchange rate (see chapter 14) is
given by

S¢ = my + O((EtSH_l — St) (256)

where s; is the money supply at time ¢, s; is the exchange rate and « is
a positive constant.
Assume the money supply process is given by

my = 0y + €9 (257)

where 0 is a constant and €Y is a normally distributed random variable
with mean zero and variance o3.

Suppose at a particular point in time, say t = 0, agents come to
believe that the money supply process may have changed, due to an
exogenous process such as a change in government or a statement by
officials. The new process has for simplicity the same form as the old
except with a different mean and variance:

my =01 +¢f for t >0 (258)

It is assumed that 8; < 6y and 6; = 0, so that the process can be
interpreted as going from ‘loose’ to ‘tight’ money. Agents are not sure
which money supply process is in operation. It is further assumed for
simplicity that agents believe that if policy has changed it will not be
changed back and they also know the parameters of the potential new
process.

Solving (29) forward we obtain the solution

i=0
where v = ﬁ
Expected money supply given the assumptions above is equal to
Eymyiy; = 600(1 — Pyy) for any i > 0,¢t >0 (260)

where Pj; is agents’ assessed probability at time t that the process
changed at time 0.
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Consequently the exchange rate is given by
St = (1 — *y)mt —|— ’)/(1 — Plt)eo (261)

(note Eysi11 = 0p(1 — Pyy) from (30) and (31) since ﬁ =14+~ 442+
—+7®and gz =1-7)

To obtain the best estimate of P, agents combine their prior beliefs
about the probability together with their observations of money out-
comes each period to update their posterior probabilities according to

Bayes’ Rule.

B Py 1f(1:/01)
~ Py_1f(1/601) + Por—1f(1:/60)

where Pp; is the probability of no change at ¢t =0, f(I;/6,) is the prob-
ability of observing the information set I; given that m; follows the ith
process. The posterior probabilities of each process, the posterior odds
ratio, is given by

Plt

(262)

(=2)
P _ {Pu—lﬂmt/el)} _ [P] (3r)e T o
Py Pyi—1f(me/60) Py (J;)e“ng:?g

The first term on the right-hand side of (262) shows that the change
from ¢t — 1 to t in the relative conditional probabilities depends upon
the observation of the current money supply at time ¢t. For example for
some observation of current money supply, say 7, the probability ofll;)e—

1t

ing under either regime is equal, so that the posterior probabilities,P—m,
Py

are equal to the prior probabilities Pm:‘ Observations of money sup-
ply different from 77 convey information about the regimes causing the
probabilities to be revised. The last term on the right-hand side of
(262) quantifies this information. For a normally distributed error the
sampling distribution for a single scalar observation, m, from a normal

distribution parameterized by a mean 6 and a variance o2 is given by

_ (m—0)?
e 202

Voro
Clearly the information accruing from an observation will depend on

the particular distribution of the error term.
If for simplicity we assume that g = 07 = o then we can write (36)

P(m/0) = (264)

as

Py
In(—)=1In
( POt)

Py f(mt/91)
Pot—1 n f(mt/90>

(265)
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so that for any realization of the money process my
o e /01) _ [(mk —60)° — mi}
f(m/6o) 207

Substituting (265) into (266) we obtain a linear difference equation
that can be solved as

(266)

t

Plt PlO (my, — 00)? — m3
In(—== POt Poo Z { 5o2 (267)

In equation (266) the evolution of probabilities is seen to depend on
the actual observations of the process. When the money supply observed
today is very negative agents will think it more likely that policy has
changed and vice versa.

Taking expectations of (266), defining 6; as the true 6 gives

P, P, _0,)2 — 62
Eln(P—lt) = In % +t [—(01 2(07)2 bi } (268)
ot 0,0
. Pig 02 — 26,00
In P +t [ >3 (269)

Equation (268) illustrates that the expected value of the ‘true’ process
rises over time. For instance when policy has changed so 6; = 6, =
0, from (268) we observe that the log probability increases to infinity

2
because of the trend term %% (or that Py goes to zero). When policy

has not changed so that 6; = 9 the reverse is true due to the trend

ter
are random variables determined by random observations of the money
supply.

Given this analysis of the evolution of probabilities Lewis is able to
investigate the effects on the exchange rate and forecast errors.Taking
expectations at ¢ — 1 of (260) and subtracting from (260) we obtain the
forecast errors corresponding to each potential process as:

—Ei18p = (1 —7)e + 0o(Prys—1 —yP1y) if 0; = 0o (270)

and
— By 18 = (1—7)e; — 00(Post—1 —YPor) if 0; = 04 (271)

(note Ey_1Piy = P11, Ei_1 Py = Poy—1).

Equations (269) and (270) illustrate that whilst agents are learning,
expectation errors will exhibit a systematic component and ‘appear non-
rational ezx-post’.
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Taking expectations of the forecast errors in (270) conditional upon
a change in policy to 8, the expected evolution of the forecast errors, for
a large number of my, is given by

E(St — Et_lst/ﬁl) = —QQ[E(PO,t_l/Hl) — ’)/E(P()t/el)] <0 (272)

The inequality is negative since v is less than one and EPy /01 <
E(Pos1/61).

From (271) we observe that if agents do not fully realize that policy
has changed the exchange will be expected to be weaker than subse-
quently occurs. Ex-post expectations will appear to be irrational.

Lewis’ model nicely illustrates how learning about a regime change
using Bayes’ rule can mimic the outcomes of the Peso problem discussed
earlier in this chapter.

CONCLUSIONS

In this chapter we have discussed some of the implications of the propo-
sition that financial markets are efficient. As particular applications of
the proposition we examined the behaviour of stocks, exchange rates
and bond markets. The theoretical work on efficiency in asset markets
is large and is expanding dramatically so that we have only been able
to provide a flavour of the debate. Whilst the new generation of mod-
els which stress micro-structure arguments appear of great interest, our
own view is that the empirical evidence for (approximate) semi-strong
efficiency in the capital market is sufficiently powerful and convincing for
it to be regarded as a ‘stylized fact’. In fact it is now standard practice
for macroeconomic model builders to simulate or forecast the impact of
changes in government policy within models that assume capital market
efficiency.
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APPENDIX 14A1 - INCOMPLETE CURRENT INFOR-
MATION

The purpose of this appendix is to show the manner in which the stan-
dard test of efficiency based on equation (81) of this chapter has to be
modified if agents have an incomplete current information set. For ana-
lytical simplicity (though the argument is quite general), we assume the
series y; is the summation of two infinite moving average error processes
in the two white noise errors, € and z.

Yt Zy-i-zﬂ'zft—i -I-Z(Sizt_i (1)
=0 =0

.where 7 is the mean of the series, and the 7; and §; are constant coeffi-
cients.

Consider the rational expectation of y; 1 formed at time t. If there
is full current information at time ¢ the expectation will be given by:

(oo} oo
Bty =7+ Z Ti€—i+1 + Z 0izt—1+i (2)
i=0 i=0
In this case, given the one-period forecast horizon, the ex-post fore-
cast error will be given by a white noise error:

Yi+1 — Eryet1 = To€iq1 + 00241 (3)

Consequently the standard tests based on (81) are correct in these
circumstances.

Suppose next that agents have incomplete current information at
time ¢, and instead observe some current global information (for instance
via asset markets), but other global information with a one-period lag. In
particular we will assume for simplicity (though the argument is easily
generalized) that there is one global indicator (say the interest rate)
which is given the representation:

oo
Ry =7+ Z(dﬁtﬂ' + hize—;) (4)
i=0
where 7 is the mean of the series and the d; and h; are constant coeffi-
cients.

In this incomplete current information case the one-period-ahead ex-

pectation of ¥, is given by:

Eiyip1 =7+ mEie + Z Ti€—iv1 + 01 B 2 + Z 0izi—iv1 (D)
i—2 i—2



418 Confronting Models with Facts

Consequently the forecast error is given by:
Yir1 — Biyir1 = mo€rp1 + 60ze41 + miler — Eve] +61(zs — Evzy]  (6)

Given current observation of the global indicator R; and using the
usual signal extraction formulae (as discussed in chapter 3) we obtain:

1
Eie, = d_¢e(d06t + hozt) (7)
1
Eiz = h_o(l — ¢.)(doer + hozt) (8)
where
d2o2

= Bo? 1 202

and 02 and 02 are the variances of the two errors, € and z respectively.
Consequently the forecast error (Ky41) is given by:

ho
K1 = mo€i41 + 002141 + 1 {(1 — ¢ e — —¢ng} +

do

o1 [0~ 201 -00a| (©

Serial Correlation of Forecast Errors

If we take expectations of two successive errors we find:

2.2
0.0¢

E(K K) =8 ———
( t+1, t) {dggg_i_hgo_z

b mah — dadal oo — d0ds]— (10)

Consequently, in general, incomplete current information will give
rise to a moving-average error process. This will not be the case if,
first, we have implicitly full current information (for example, if there
are as many global indicators in the economy as random shocks; see
Karni, 1980), or if, secondly, we observe the current value of the variable
to be forecast (it being itself a global indicator). In this latter case
mo = do, 6o = ho (also m1 = dy, 61 =h1) and the expected correlation
in (10) is equal to zero.

It would appear from this result that standard tests of efficiency based
on (81) will have the usual properties for asset prices in particular (which
it can be assumed are observed currently), even under incomplete cur-
rent information. However, the general point remains that variables not
currently observed (i.e. the majority) will under incomplete information
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be inappropriately tested for efficiency by these methods. Furthermore,
one needs to scrutinize carefully the assumption that the asset prices in
question are contemporaneously observed. In very high frequency data
(e.g. hourly) this will obviously not be so except for a few continuously-
broadcast asset prices; it will also not be so in lower frequency data
for averages of variables (e.g. the level of all short-term interest rates),
which are often examined in these studies.

In general, in circumstances of incomplete current information the
moving-average error in equation (9) will be given by s + j — 1, where
s is the time horizon of the forecast and j is the longest lag on global
information relevant for forecasting y;. Clearly there may be some a
priori doubt as to the magnitude of j, which may cause some problems
in interpretation of tests based on (81). As a consequence of the moving-
average error process, least squares estimates of (81) under incomplete
current information will be inefficient but unbiased, since

E(Kiv1, E(Yyir1)) =0 (11)

and least squares estimates have the property of unbiasedness even in
the presence of moving-average error processes. This situation is the
same as that of overlapping information in the usually assumed case of
full current information; overlapping information here occurs with s > 1,
familiarly introducing a moving-average process with the same effects.

These results have potential implications for a number of empiri-
cal studies (see e.g. Holden and Peel, 1977; Turnovsky, 1970) in which
an implicit assumption of full current information has been made when
studying directly-observed consumer price expectations data which can-
not readily be assumed to be part of the current information set. The
point here is that price data are not currently observable on any rea-
sonable assumptions. Consequently, the ‘expectations errors’ should be
serially correlated, as indeed has often been found in these tests. It is
possible that these survey data may well reveal rationality after all. For
further implications of partial current information sets for the testing of
efficiency, see Minford and Peel (1984).
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APPENDIX 14A2 COMPOSITE MOVING-AVERAGE
ERROR PROCESSES

Testing for the efficiency of relationships involving moving-average errors
poses problems. We wish to form a moving-average error process from
the composite error process

avi41 + bug + cupy1 + duy (1)

where vyy; and us44(i = 1, 0) are serially uncorrelated random variables.
We define the new moving-average process

Gpy1 + IO = avip1 +bvg + cug g + duyg (2)

where ¢, ; (i =1, 0) is a serially uncorrelated random variable.

The method is to equate the ratio of the variance to the covariance
of the error processes on the left- and right-hand sides of (2) (where the
variances and covariances of the left- and right-hand sides are equal by
definition — a similar method is employed for higher-order composite
processes).

We obtain that

(L+35%)0% (0 + )02 + (¢ + d*)o? + 2(bd + ac)cov(uv)
jo3 abo? + cdo? + (ad + be)cov(uv)

(3)
where 03), 02, 02 are the variances of ¢, v, u and cov(uv) is the covariance
between u and v.

Equation (3) is a quadratic equation in j (note 0'3) cancels). The
root of the equation which has modulus less than unity is chosen so
that the process can be stationary. Clearly the magnitude of j will
reflect relative magnitudes of variances and covariances. For example
ifa=1 b= -1, c=1and d =0, 02 = 02 and cov(uv) = 0 then
. —=3450°
J= 5 -

Using the lag operator it is also useful to note that we can express
Gpi1 88

¢ _ [avt_,_l + b’Ut + CUt41 + dut]
t+l (1+j4L)
[avt+1 + b"Ut + cut+1 -+ dut]{l — jL +j2L2 — j3L3 + ] (4)

From (4) we observe that ¢,,; can be expressed as an infinite sum
of the past errors v and w. This is important in some tests of efficiency
under rational expectations. Since the errors in the composite process
are in principle any errors in the economy if a moving-average error
process is estimated jointly with the other parameters of the model it
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will induce correlations between the regressors and the error term which
will result in biased and inconsistent parameter estimates. For instance
consider the two-period ahead rational expectations forecast error for
the process,

o0 o0
ye =T+ Y viw—it Y bive (5)
i=0 i=0
We have that
Y = Ey_oys + Yous + v1us—1 + Sovs + 01051 (6)

Although the error term is a moving-average process, in a test of
efficiency it would be inappropriate to estimate jointly the parameters
of the model and the moving-average process

Yo =g Fo oy + oy + 5 (7)

and test that 840: 0, (/)\41: 1. As shown above the error term can be writ-
ten as an infinite summation of previous errors. This is also a property
of the forecast so that there will be correlation between the error and
the explanatory variable. An appropriate procedure is to estimate (7)
by least squares and employ standard errors which are modified to allow
for the serial correlation in the error term (see e.g. Hansen and Hodrick,
1980).

It is also useful to note that an ARMA forecast of a variable, even
assuming the underlying model is linear, is less efficient than a rational
expectations forecast if the reduced form of a variable includes com-
posite moving-average errors. Suppose for illustration a variable, g, is
generated by the process

Yt = Ut — Up—1 + V¢ (8)
The rational one-period ahead forecast, Ey_1y; = —uz_1. Let the
moving-average process for (8) be given by y; = ¢, — jo,_1 (j > 0) so
that the one-period ARMA forecast is Ef* ;y: = —j¢,_;. The associated
forecast errors are
Yy — By = wp + vy (9)
for the rational expectation and for the ARMA forecast
Up — Up—1 + V¢
(1—3L)
Assuming for simplicity that cov(uv) is zero the variance of the ra-
tional expectations forecast is

Yo — By = ¢ = (10)

o2 402 (11)
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The ARMA forecast error can be written as

ye — By =w — (1= fup—y — 5 (1 — flug—o — 52 (1 — jlug—s + ...
+op+ o v+ (12)

(Recall that ﬁ =1+jL+ 202+ 302 +...)

Although the ARMA forecast error appears serially correlated this is
in fact not the case as substitution for j in terms of the variances of u
and v, though messy, will demonstrate.

The variance of the ARMA forecast error is given by

or+o(1=)PA+77+5+5°+...1+
oi{l+7+ +4%+...} (13)
which we can simplify as
1— 202 2
( J)Qo—u Jv = (14)
1-5%  (1-j?

Because j is less than one the variance of the ARMA forecast is
greater than the rational expectations forecast error. Essentially infor-
mation is lost in forecasting the composite error process. In addition the
innovation from the ARMA process, ¢,, though serially uncorrelated,
will not necessarily be orthogonal to variables that are correlated with
past u and v innovations, due to the implicit dependence of the ARMA
innovation on these variables.
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